, Volume 31, Issue 6, pp 1003–1017 | Cite as

In vitro leishmanicidal activity and theoretical insights into biological action of ruthenium(II) organometallic complexes containing anti-inflammatories

  • Victor M. MirandaEmail author
  • Monica S. Costa
  • Silvana Guilardi
  • Antonio E. H. Machado
  • Javier A. Ellena
  • Kelly A. G. Tudini
  • Gustavo Von Poelhsitz


Leishmaniasis, a neglected tropical disease caused by protozoans of the genus Leishmania, kills around 20–30 thousand people in Africa, Asia, and Latin America annually and, despite its potential lethality, it can be treated and eventually cured. However, the current treatments are limited owing to severe side effects and resistance development by some Leishmania. These factors make it urgent to develop new leishmanicidal drugs. In the present study, three ruthenium(II) organometallic complexes containing as ligands the commercially available anti-inflammatories diclofenac (dic), ibuprofen (ibu), and naproxen (nap) were synthesized, characterized, and subjected to in vitro leishmanicidal activity. The in vitro cytotoxicity assays against Leishmania (L.) amazonensis and Leishmania (L.) infantum promastigotes have shown that complexes [RuCl(dic)(η6-p-cymene)] (1) and [RuCl(nap)(η6-p-cymene)] (3) were active against both Leishmania species. Complex [RuCl(ibu)(η6-p-cymene)] (2) has exhibited no activity. The IC50 values for the two active complexes were respectively 7.42 and 23.55 μM, for L. (L.) amazonensis, and 8.57 and 42.25 μM, for L. (L.) infantum. Based on the toxicological results and computational analysis, we proposed a correlation between the complexes and their activity. Our results suggest both complexation to ruthenium(II) and ligands structure are key elements to leishmanicidal activity.


Ruthenium(II) p-Cymene Leishmaniasis Anti-inflammatories 



We thank the Brazilian Agencies of Research: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), and Grupo de Materiais Inorganicos do Triângulo (GMIT), research group funded by FAPEMIG. The authors are also thankful to the Multiuser Laboratory of the Instituto de Química at Universidade Federal de Uberlândia for providing the equipment and technical support for elemental analysis and 1H-NMR.


  1. Adamo C, Jacquemin D (2013) The calculation of excited-state properties with time dependent density functional theory. Chem Soc Rev 42:845–856. CrossRefPubMedGoogle Scholar
  2. Alcindor T, Beauger N (2011) Oxaliplatin: a review in the era of molecularly targeted therapy. Curr Oncol 18(1):18–25CrossRefGoogle Scholar
  3. Altomare A, Cascarano G, Giacovazzo C et al (1994) SIR92—a program for automatic solution of crystal structures by direct methods. J Appl Cryst 27:435. CrossRefGoogle Scholar
  4. Aman F, Hanif M, Siddiqui WA et al (2014) Anticancer ruthenium(η6-p-cymene) complexes of nonsteroidal anti-inflammatory drug derivatives. Organometallics 33(19):5546–5553. CrossRefGoogle Scholar
  5. Antonarakis ES, Esmadi A (2010) Ruthenium-based chemotherapeutics: are they ready for prime time? Cancer Chemother Pharmacol 66(1):1–9. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Aronson N, Herwaldt BL, Libman M et al (2017) Diagnosis and treatment of leishmaniasis: clinical practice guidelines by the Infectious Diseases Society of America (ISDA) and the American Society of Tropical Medicine and Hygiene (ASTMH). Am J Trop Med Hyg 96:24–45. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Barros CL, Oliveira PJP, Jorge FE et al (2010) Gaussian basis set of double zeta quality for atoms Rb through Xe: application in non-relativistic and relativistic calculations of atomic and molecular properties. Mol Phys 108:1965–1972. CrossRefGoogle Scholar
  8. Blessing RH (1995) An empirical correction for absorption anisotropy. Acta Cryst A51:33–38. CrossRefGoogle Scholar
  9. Borthagaray G, Mondelli M, Torre MH (2016) Essential transition metal ion complexation as a strategy to improve the antimicrobial activity of organic drugs. J Infect Dis Epidemiol 2(2):1–8. CrossRefGoogle Scholar
  10. Chai JD, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10(44):6615–6620. CrossRefPubMedGoogle Scholar
  11. Colina-Vegas L, Villarreal W, Navarro M et al (2015) Cytotoxicity of Ru(II) piano-stool complexes with chloroquine and chelating ligands against breast and lung tumor cells: interactions with DNA and BSA. J Inorg Biochem 153:150–161. CrossRefPubMedGoogle Scholar
  12. Costa MS, Gonçalves YG, Nunes DCO et al (2017) Anti-Leishmania activity of new ruthenium(II) complexes: effect on parasite-host interaction. J Inorg Biochem 175:225–231. CrossRefPubMedGoogle Scholar
  13. da Silva Maffei R, Yokoyama-Yasunaka JK, Miguel DC, Uliana SR, Esposito BR (2009) Synthesis, characterization and evaluation of antileishmanial activity of copper(II) with fluorinated α-hydroxycarboxylate ligands. Biometals 22(6):1095–1101. CrossRefGoogle Scholar
  14. Dayan O, Tercan M, Özdemir N (2016) Synthesis and molecular structures of novel Ru(II) complexes with bidentate benzimidazole based ligands and their catalytic efficiency for oxidation of benzyl alcohol. J Mol Struct 1123:35–43. CrossRefGoogle Scholar
  15. Demoro B, Sarniguet C, Sanchez-Delgado R et al (2012) New organoruthenium complexes with bioactive thiosemicarbazones as co-ligands: potential anti-trypanosomal agents. Dalton Trans 41:1534–1543. CrossRefPubMedGoogle Scholar
  16. Demoro B, Rossi M, Gambino D (2013) Potential mechanism of the anti-trypanosomal activity of organoruthenium complexes with bioactive thiosemicarbazones. Biol Trace Elem Res 153:371–381. CrossRefPubMedGoogle Scholar
  17. Eiras D, Kirkman LA, Murray HW (2015) Cutaneous leishmaniasis: current treatment practices in the for returning travelers. Curr Treat Options Infect Dis 7:52–62. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Etter MC (1990) Encoding and decoding hydrogen-bond patterns of organic compounds. Acc Chem Res 23(4):120–126. CrossRefGoogle Scholar
  19. Fandzloch M, Arriaga JMM, Sanchez-Moreno M et al (2017) Strategies for overcoming tropical disease by ruthenium complexes with purine analogue: application against Leishmania spp. and Trypanosoma cruzi. J Inorg Biochem 176:144–155. CrossRefPubMedGoogle Scholar
  20. Farrugia LJ (2012) WinGX and ORTEP for Windows: an update. J Appl Cryst 45:849–854. CrossRefGoogle Scholar
  21. Fitzpatrick FA (2004) Cyclooxygenase enzymes: regulation and function. Curr Pharm Des 10(6):577–588CrossRefGoogle Scholar
  22. Hansch C, Leo A, Hoekman D (1995) Exploring QSAR: hydrofobic, electronic, and steric constants. American Chemical Society, WashingtonGoogle Scholar
  23. Hartwig J (2010) Organotransition metal chemistry: from bonding to catalysis. University Science Books, SausalitoGoogle Scholar
  24. Helal MH, El-Awdan SA, Salem MA et al (2015) Synthesis, biological evaluation and molecular modeling of novel series of pyridine derivatives as anticancer, anti-inflammatory and analgesic agents. Spectrochim Acta A 135:764–773CrossRefGoogle Scholar
  25. Ho GY, Woodward N, Coward JI (2016) Cisplatin versus carboplatin: comparative review of therapeutic management in solid malignancies. Crit Rev Oncol Hematol 102:37–46. CrossRefPubMedGoogle Scholar
  26. Iniguez E, Sanchez A, Vasquez M et al (2013) The metal-drug synergy: new ruthenium(II) complexes of ketoconazole are highly active against Leishmania major and Trypanosoma cruzi and non-toxic to human or murine normal cells. J Biol Inorg Chem 18(7):779–790. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Iniguez E, Varela-Ramirez A, Martinez A et al (2016) Ruthenium-clotrimazole complex has significant efficacy in the murine model of cutaneous leishmaniasis. Acta Trop 164:402–410. CrossRefPubMedPubMedCentralGoogle Scholar
  28. IOC (2012) Conheça as principais doenças tropicais negligenciadas. Instituto Oswaldo Cruz, Rio de Janeiro. Accessed 23 April 2018
  29. Jensen SB, Rodger SJ, Spicer MD (1998) Facile preparation of η6-p-cymene ruthenium diphosphine complexes. Crystal structure of [(η6-p-cymene)Ru(dppf)Cl]PF6. J Organomet Chem 556:151–158. CrossRefGoogle Scholar
  30. Jofre F (2010) p-Cymene. Madison metabolomics consortium database. Accessed 28 April 2018
  31. Jorge FE, Canal Neto A, Camiletti GG, Machado SF (2009) Contracted Gaussian basis sets for Douglas-Kroll-Hess calculations: estimating scalar relativistic effects of some atomic and molecular properties. J Chem Phys 130(6):064108. CrossRefPubMedGoogle Scholar
  32. Kumar A, Ner Y, Sotzing G (2017) Low energy gap, conducting and transparent polymers. In: Sun S, Dalton L (eds) Introduction to organic electronic and optoelectronic materials and devices. CRC Press, Boca Raton, pp 225–250Google Scholar
  33. Leckband D, Israelachvili J (2001) Intermolecular forces in biology. Quart Rev Biophys 34(2):105–267. CrossRefGoogle Scholar
  34. Legare D, Ouellete M (2017) Drug resistance in Leishmania. In: Berghuis A, Matlashewski G, Wainberg M, Sheppard D (eds) Handbook of antimicrobial resistance. Springer, New York, pp 313–341CrossRefGoogle Scholar
  35. Li J, Zhang Y, Yang M, Ma H (2017) Two novel Co(II) and Ni(II) complexes of tebuconazole with enhanced antifungal activities. RSC Adv 7:33364–33372. CrossRefGoogle Scholar
  36. Lopes JCS, Damasceno JL, Oliveira PF et al (2015) Ruthenium(II) complexes containing anti- inflammatory drugs as ligands: synthesis, characterization and in vitro cytotoxicity activities on cancer cell lines. J Braz Chem Soc 26(9):1838–1847. CrossRefGoogle Scholar
  37. Macrae CF, Edgington PR, McCabe P et al (2006) Mercury: visualization and analysis of crystal structures. J Appl Cryst 39:453–457. CrossRefGoogle Scholar
  38. Mandal P, Kundu BK, Vyas K et al (2018) Ruthenium(II) arene NSAID complexes: inhibition of cyclooxygenase and antiproliferative activity against cancer cell lines. Dalton Trans 47:517–527. CrossRefPubMedGoogle Scholar
  39. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396. CrossRefPubMedGoogle Scholar
  40. Martinez A, Carreon T, Iniguez E et al (2012) Searching for new chemotherapies for tropical diseases: ruthenium-clotrimazole complexes display high in vitro activity against leishmania major and trypanosoma cruzi and low toxicity toward normal mammalian cells. J Med Chem 55(8):3867–3877. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Meyer EA, Castellano RK, Diederich F (2003) Interactions with aromatic rings in chemical and biological recognition. Angew Chem Int Ed Engl 42(11):1210–1250. CrossRefPubMedGoogle Scholar
  42. Mishra AK, Mishra L (2018) Ruthenium chemistry. CRC Press, SingaporeCrossRefGoogle Scholar
  43. Monzote L, Cordova WHP, Garcia M et al (2016) In vitro and in vivo activities of phenolic compounds against cutaneous leishmaniasis. Rec Nat Prod 10(3):269–276Google Scholar
  44. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefGoogle Scholar
  45. Nakamoto K (2009) Infrared and Raman spectra of inorganic and coordination compounds, Part B: Applications in coordination, organometallic, and bioinorganic chemistry, 6th edn. Willey, HobokenGoogle Scholar
  46. No JH (2016) Visceral leishmaniasis: revisiting current treatments and approaches for future discoveries. Acta Trop 155:113–123. CrossRefPubMedGoogle Scholar
  47. Pastuszko A, Majchrzak K, Czyz M et al (2016) The synthesis, lipophilicity and cytotoxic effects of new ruthenium(II) arene complexes with chromone derivatives. J Inorg Biochem 159:133–141. CrossRefPubMedGoogle Scholar
  48. Perea A, Manzano JI, Castanys S, Gamarro F (2016) The LABCG2 transporter from the protozoan parasite leishmania is involved in antimony resistance. Antimicrob Agents Chemother 60:3489–3496. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Polat T, Bulut F, Kandemirli F, Yildirim G (2015) Vibrational assignments, spectroscopic investigation (FT-IR and FT-Raman), NBO, MEP, HOMO-LUMO analysis and intermolecular hydrogen bonding interactions of 7-fluoroisatin, 7-bromoisatin and 1 methylisatin—a comparative study. J Mol Struct 1101:189–211. CrossRefGoogle Scholar
  50. Pomastowski P, Sprynskyy M, Zuvela P et al (2016) Silver-lactoferrin nanocomplexes as a potent antimicrobial agent. J Am Chem Soc 138(25):7899–7909. CrossRefPubMedGoogle Scholar
  51. Ramirez-Macias I, Marin C, Chahboun R et al (2012) In vitro evaluation of new terpenoid derivatives against Leishmania infantum and Leishmania braziliensis. Mem Inst Oswaldo Cruz 107(3):370–376. CrossRefPubMedGoogle Scholar
  52. Rao P, Knauss EE (2008) Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): cyclooxygenase (COX) inhibition and beyond. J Pharm Pharm Sci 11(2):81–110CrossRefGoogle Scholar
  53. Rey L (2008) Parasitologia: parasitos e doenças parasitárias do homem nos trópicos ocidentais. Guanabara Koogan, Rio de JaneiroGoogle Scholar
  54. Ribeiro RF, Marenich AV, Cramer CJ, Truhlar DG (2011) Use of solution-phase vibrational frequencies in continuum models for free energy of solvation. J Phys Chem B 115:14556–14562. CrossRefPubMedGoogle Scholar
  55. Scalmani G, Frisch MJ (2010) Continuous surface charge polarizable continuum models of solvation. I. General formalism. J Chem Phys 132(11):114110. CrossRefPubMedGoogle Scholar
  56. Shweshein KSAM, Andric F, Radoicic A et al (2014) Lipophilicity assessment of ruthenium(II)-arene complexes by means of reversed-phase thin-layer chromatography and DFT calculation. Sci World J 2014:862796. CrossRefGoogle Scholar
  57. Stone AJ (2013) The theory of intermolecular forces, 2nd edn. Oxford University Press, OxfordCrossRefGoogle Scholar
  58. Takacs-Novak K (2012) Physicochemical profiling in drug research and development. In: Mandic Z (ed) Physico-chemical methods in drug discovery and development. IAPC Publishing, Zagreb, pp 1–52Google Scholar
  59. Tocher DA, Gould RO, Stephenson TA et al (1983) Areneruthenium(II) carboxylates: reactions with ligands and the X-ray structure of the p-cymene pyrazine complex [Ru(η- p-MeC6H4CHMe-2)Cl(pyz)2]PF6. J Chem Soc, Dalton Trans 1:1571–1581. CrossRefGoogle Scholar
  60. Tyagi N, Viji M, Karunakaran S et al (2015) Enhancement in intramolecular interactions and in vitro biological activity of tripodal tetradentate system upon complexation. Dalton Trans 44:15591–15601. CrossRefPubMedGoogle Scholar
  61. Velasquez A, Souza R, Ribeiro A et al (2016) Antiprotozoal activity of the cyclopalladated complexes against Leishmania amazonensis and Trypanosoma cruzi. J Braz Chem Soc 27(6):1032–1039. CrossRefGoogle Scholar
  62. Vlahovic F, Ivanovic S, Zlatar M, Gruden M (2017) Density functional theory calculation of lipophilicity for organophosphate type pesticides. J Serb Chem Soc 82(12):1369–1378. CrossRefGoogle Scholar
  63. WHO (2018) Leishmaniasis. World Health Organization, Geneva. Accessed 23 April 2018
  64. Zhou J, Li J, Li J et al (2017) Structure and enhanced antifungal activity of a divalent cobalt(II) complex with hexaconazole. Chem Res Chin Univ 33(6):864–868. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Victor M. Miranda
    • 1
    Email author
  • Monica S. Costa
    • 2
  • Silvana Guilardi
    • 1
  • Antonio E. H. Machado
    • 1
    • 3
  • Javier A. Ellena
    • 4
  • Kelly A. G. Tudini
    • 2
  • Gustavo Von Poelhsitz
    • 1
  1. 1.Instituto de QuímicaUniversidade Federal de UberlândiaUberlândiaBrazil
  2. 2.Instituto de Genética e BioquímicaUniversidade Federal de UberlândiaUberlândiaBrazil
  3. 3.Programa de Pós-Graduação em Ciências Exatas e Tecnológicas, UAE – FísicaUniversidade Federal de CatalãoCatalãoBrazil
  4. 4.Instituto de Física de São CarlosUniversidade de São PauloSão CarlosBrazil

Personalised recommendations