, Volume 31, Issue 6, pp 927–940 | Cite as

Iron chelator deferiprone rescues memory deficits, hippocampal BDNF levels and antioxidant defenses in an experimental model of memory impairment

  • Luisa Azambuja Alcalde
  • Betânia Souza de Freitas
  • Gustavo Dalto Barroso Machado
  • Pedro Castilhos de Freitas Crivelaro
  • Victoria Campos Dornelles
  • Henrique Gus
  • Ricardo Tavares Monteiro
  • Luiza Wilges Kist
  • Mauricio Reis Bogo
  • Nadja SchröderEmail author


Brain-derived neurotrophic factor (BDNF) plays a key role in neural development and physiology, as well as in pathological states. Post-mortem studies demonstrate that BDNF is reduced in the brains of patients affected by neurodegenerative diseases. Iron accumulation has also been associated to the pathogenesis of neurodegenerative diseases. In rats, iron overload induces persistent memory deficits, increases oxidative stress and apoptotic markers, and decreases the expression of the synaptic marker, synaptophysin. Deferiprone (DFP) is an oral iron chelator used for the treatment of systemic iron overload disorders, and has recently been tested for Parkinson’s disease. Here, we investigated the effects of iron overload on BDNF levels and on mRNA expression of genes encoding TrkB, p75NTR, catalase (CAT) and NQO1. We also aimed at investigating the effects of DFP on iron-induced impairments. Rats received iron or vehicle at postnatal days 12–14 and when adults, received chronic DFP or water (vehicle). Recognition memory was tested 19 days after the beginning of chelation therapy. BDNF measurements and expression analyses in the hippocampus were performed 24 h after the last day of DFP treatment. DFP restored memory and increased hippocampal BDNF levels, ameliorating iron-induced effects. Iron overload in the neonatal period reduced, while treatment with DFP was able to rescue, the expression of antioxidant enzymes CAT and NQO1.


Deferiprone Iron Memory BDNF Catalase Neurodegeneration 



This research was supported by the National Council for Scientific and Technological Development (CNPq; Grant Numbers 308290/2015-1and 421643/2016-1 to NS); the National Institute for Translational Medicine (INCT-TM). M.R.B. is Research Career Awarded of the CNPq. V.C.D. is recipient of a PROBIC/FAPERGS fellowship. P. C. de F. C. and R.T.M. are recipients of BPA/PUCRS scholarships. L.W.K. is recipient of fellowship CAPES/PNPD Program.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted and approved by the Institutional Ethics Committee (SIPESQ# 7205).


  1. Agrawal S, Fox J, Thyagarajan B, Fox JH (2018) Brain mitochondrial iron accumulates in Huntington’s disease, mediates mitochondrial dysfunction, and can be removed pharmacologically. Free Radic Biol Med 120:317–329. CrossRefPubMedGoogle Scholar
  2. Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK (2013) GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther 138:155–175. CrossRefPubMedGoogle Scholar
  3. Balaratnasingam S, Janca A (2012) Brain derived neurotrophic factor: a novel neurotrophin involved in psychiatric and neurological disorders. Pharmacol Ther 134:116–124. CrossRefPubMedGoogle Scholar
  4. Bar-Am O, Amit T, Kupershmidt L, Aluf Y, Mechlovich D, Kabha H, Danovitch L, Zurawski VR, Youdim MB, Weinreb O (2015) Neuroprotective and neurorestorative activities of a novel iron chelator-brain selective monoamine oxidase-A/monoamine oxidase-B inhibitor in animal models of Parkinson’s disease and aging. Neurobiol Aging 36:1529–1542. CrossRefPubMedGoogle Scholar
  5. Bauernfeind AL, Babbitt CC (2017) The predictive nature of transcript expression levels on protein expression in adult human brain. BMC Genomics 18:322. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bekinschtein P, Cammarota M, Medina JH (2014) BDNF and memory processing. Neuropharmacology 76:677–683. CrossRefPubMedGoogle Scholar
  7. Belaidi AA, Bush AI (2016) Iron neurochemistry in Alzheimer’s disease and Parkinson’s disease: targets for therapeutics. J Neurochem 139(Suppl 1):179–197. CrossRefPubMedGoogle Scholar
  8. Bonefeld BE, Elfving B, Wegener G (2008) Reference genes for normalization: a study of rat brain tissue. Synapse 62:302–309. CrossRefPubMedGoogle Scholar
  9. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  10. Bustin SA, Benes V, Garson J et al (2013) The need for transparency and good practices in the qPCR literature. Nat Methods 10:1063–1067. CrossRefPubMedGoogle Scholar
  11. Carboni E, Tatenhorst L, Tönges L, Barski E, Dambeck V, Bähr M, Lingor P (2017) Deferiprone rescues behavioral deficits induced by mild iron exposure in a mouse model of alpha-synuclein aggregation. Neuromol Med 19(2–3):309–321. CrossRefGoogle Scholar
  12. Choi S, Friedman WJ (2014) Interleukin-1β enhances neuronal vulnerability to proNGF-mediated apoptosis by increasing surface expression of p75(NTR) and sortillin. Neuroscience 257:11–19. CrossRefPubMedGoogle Scholar
  13. da Silva VK, de Freitas BS, da Silva AD, Nery LR, Falavigna L, Ferreira RD, Bogo MR, Hallak JE, Zuardi AW, Crippa JA, Schröder N (2014) Cannabidiol normalizes caspase 3, synaptophysin, and mitochondrial fission protein DNM1L expression levels in rats with brain iron overload: implications for neuroprotection. Mol Neurobiol 49:222–233. CrossRefPubMedGoogle Scholar
  14. de Lima MN, Polydoro M, Laranja DC, Bonatto F, Bromberg E, Moreira JC, Dal-Pizzol F, Schröder N (2005) Recognition memory impairment and brain oxidative stress induced by postnatal iron administration. Eur J Neurosci 21:2521–2528. CrossRefPubMedGoogle Scholar
  15. de Lima MN, Luft T, Roesler R, Schröder N (2006) Temporary inactivation reveals an essential role of the dorsal hippocampus in consolidation of object recognition memory. Neurosci Lett 405(1–2):142–146. CrossRefPubMedGoogle Scholar
  16. de Lima MN, Presti-Torres J, Caldana F, Grazziotin MM, Scalco FS, Guimarães MR, Bromberg E, Franke SI, Henriques JA, Schröder N (2007) Desferoxamine reverses neonatal iron-induced recognition memory impairment in rats. Eur J Pharmacol 570:111–114. CrossRefPubMedGoogle Scholar
  17. de Lima MN, Dias CP, Torres JP, Dornelles A, Garcia VA, Scalco FS, Guimarães MR, Petry RC, Bromberg E, Constantino L, Budni P, Dal-Pizzol F, Schröder N (2008) Reversion of age-related recognition memory impairment by iron chelation in rats. Neurobiol Aging 29:1052–1059. CrossRefPubMedGoogle Scholar
  18. Devos D, Moreau C, Devedjian JC, Kluza J, Petrault M, Laloux C, Jonneaux A, Ryckewaert G, Garçon G, Rouaix N, Duhamel A, Jissendi P, Dujardin K, Auger F, Ravasi L, Hopes L, Grolez G, Firdaus W, Sablonnière B, Strubi-Vuillaume I, Zahr N, Destée A, Corvol JC, Pöltl D, Leist M, Rose C, Defebvre L, Marchetti P, Cabantchik ZI, Bordet R (2014) Targeting chelatable iron as a therapeutic modality in Parkinson’s disease. Antioxid Redox Signal 21:195–210. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ding B, Chen KM, Ling HW, Sun F, Li X, Wan T, Chai WM, Zhang H, Zhan Y, Guan YJ (2009) Correlation of iron in the hippocampus with MMSE in patients with Alzheimer’s disease. J Magn Reson Imaging 29:793–798. CrossRefPubMedGoogle Scholar
  20. Dusek P, Schneider SA, Aaseth J (2016) Iron chelation in the treatment of neurodegenerative diseases. J Trace Elem Med Biol 38:81–92. CrossRefPubMedGoogle Scholar
  21. Fagherazzi EV, Garcia VA, Maurmann N, Bervanger T, Halmenschlager LH, Busato SB, Hallak JE, Zuardi AW, Crippa JA, Schröder N (2012) Memory-rescuing effects of cannabidiol in an animal model of cognitive impairment relevant to neurodegenerative disorders. Psychopharmacology 219:1133–1140. CrossRefPubMedGoogle Scholar
  22. Fernandez LL, de Lima MN, Scalco F, Vedana G, Miwa C, Hilbig A, Vianna M, Schröder N (2011) Early post-natal iron administration induces astroglial response in the brain of adult and aged rats. Neurotox Res 20:193–199. CrossRefPubMedGoogle Scholar
  23. Figueiredo LS, de Freitas BS, Garcia VA, Dargél VA, Köbe LM, Kist LW, Bogo MR, Schröder N (2016) Iron loading selectively increases hippocampal levels of ubiquitinated proteins and impairs hippocampus-dependent memory. Mol Neurobiol 53:6228–6239. CrossRefPubMedGoogle Scholar
  24. Fine JM, Baillargeon AM, Renner DB, Hoerster NS, Tokarev J, Colton S, Pelleg A, Andrews A, Sparley KA, Krogh KM, Frey WH, Hanson LR (2012) Intranasal deferoxamine improves performance in radial arm water maze, stabilizes HIF-1α, and phosphorylates GSK3β in P301L tau transgenic mice. Exp Brain Res 219:381–390. CrossRefPubMedGoogle Scholar
  25. Gao XP, Liu Q, Nair B, Wong-Riley MT (2014) Reduced levels of brain-derived neurotrophic factor contribute to synaptic imbalance during the critical period of respiratory development in rats. Eur J Neurosci 40:2183–2195. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Guo C, Wang T, Zheng W, Shan ZY, Teng WP, Wang ZY (2013) Intranasal deferoxamine reverses iron-induced memory deficits and inhibits amyloidogenic APP processing in a transgenic mouse model of Alzheimer’s disease. Neurobiol Aging 34:562–575. CrossRefPubMedGoogle Scholar
  27. Guo C, Zhang YX, Wang T, Zhong ML, Yang ZH, Hao LJ, Chai R, Zhang S (2015) Intranasal deferoxamine attenuates synapse loss via up-regulating the P38/HIF-1α pathway on the brain of APP/PS1 transgenic mice. Front Aging Neurosci 7:104. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Heldt SA, Stanek L, Chhatwal JP, Ressler KJ (2007) Hippocampus-specific deletion of BDNF in adult mice impairs spatial memory and extinction of aversive memories. Mol Psychiatr 12:656–670. CrossRefGoogle Scholar
  29. Huerta-García E, Pérez-Arizti JA, Márquez-Ramírez SG, Delgado-Buenrostro NL, Chirino YI, Iglesias GG, López-Marure R (2014) Titanium dioxide nanoparticles induce strong oxidative stress and mitochondrial damage in glial cells. Free Radic Biol Med 73:84–94. CrossRefPubMedGoogle Scholar
  30. Kakhlon O, Breuer W, Munnich A, Cabantchik ZI (2010) Iron redistribution as a therapeutic strategy for treating diseases of localized iron accumulation. Can J Physiol Pharmacol 88:187–196. CrossRefPubMedGoogle Scholar
  31. Kemppainen S, Rantamäki T, Jerónimo-Santos A, Lavasseur G, Autio H, Karpova N, Kärkkäinen E, Stavén S, Vicente Miranda H, Outeiro TF, Diógenes MJ, Laroche S, Davis S, Sebastião AM, Castrén E, Tanila H (2012) Impaired TrkB receptor signaling contributes to memory impairment in APP/PS1 mice. Neurobiol Aging. CrossRefPubMedGoogle Scholar
  32. Kupershmidt L, Weinreb O, Amit T, Mandel S, Bar-Am O, Youdim MB (2011) Novel molecular targets of the neuroprotective/neurorescue multimodal iron chelating drug M30 in the mouse brain. Neuroscience 189:345–358. CrossRefPubMedGoogle Scholar
  33. Langkammer C, Ropele S, Pirpamer L, Fazekas F, Schmidt R (2014) MRI for iron mapping in Alzheimer’s disease. Neurodegener Dis 13:189–191. CrossRefPubMedGoogle Scholar
  34. Langley J, Huddleston DE, Sedlacik J, Boelmans K, Hu XP (2017) Parkinson’s disease-related increase of T2*-weighted hypointensity in substantia nigra pars compacta. Mov Disord 32(3):441–449. CrossRefPubMedGoogle Scholar
  35. Lei P, Ayton S, Appukuttan AT, Volitakis I, Adlard PA, Finkelstein DI, Bush AI (2015) Clioquinol rescues Parkinsonism and dementia phenotypes of the tau knockout mouse. Neurobiol Dis 81:168–175. CrossRefPubMedGoogle Scholar
  36. Li K, Reichmann H (2016) Role of iron in neurodegenerative diseases. J Neural Transm 123:389–399. CrossRefPubMedGoogle Scholar
  37. Li Y, Pan K, Chen L, Ning JL, Li X, Yang T, Terrando N, Gu J, Tao G (2016) Deferoxamine regulates neuroinflammation and iron homeostasis in a mouse model of postoperative cognitive dysfunction. J Neuroinflammation 13:268. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Longo FM, Yang T, Knowles JK, Xie Y, Moore LA, Massa SM (2007) Small molecule neurotrophin receptor ligands: novel strategies for targeting Alzheimer’s disease mechanisms. Curr Alzheimer Res 4:503–506. CrossRefPubMedGoogle Scholar
  39. Ma Y, Zhou T, Kong X, Hider RC (2012) Chelating agents for the treatment of systemic iron overload. Curr Med Chem 19:2816–2827. CrossRefPubMedGoogle Scholar
  40. Mattson MP (2008) Glutamate and neurotrophic factors in neuronal plasticity and disease. Ann NY Acad Sci 1144:97–112. CrossRefPubMedGoogle Scholar
  41. Minichiello L (2009) TrkB signalling pathways in LTP and learning. Nat Rev Neurosci 10:850–860. CrossRefPubMedGoogle Scholar
  42. Miwa CP, de Lima MN, Scalco F, Vedana G, Mattos R, Fernandez LL, Hilbig A, Schröder N, Vianna MR (2011) Neonatal iron treatment increases apoptotic markers in hippocampal and cortical areas of adult rats. Neurotox Res 19:527–535. CrossRefPubMedGoogle Scholar
  43. Nagahara AH, Tuszynski MH (2011) Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat Rev Drug Discov 10:209–219. CrossRefPubMedGoogle Scholar
  44. Nagahara AH, Merrill DA, Coppola G, Tsukada S, Schroeder BE, Shaked GM, Wang L, Blesch A, Kim A, Conner JM, Rockenstein E, Chao MV, Koo EH, Geschwind D, Masliah E, Chiba AA, Tuszynski MH (2009) Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease. Nat Med 15:331–337. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Pan K, Li X, Chen Y, Zhu D, Li Y, Tao G, Zuo Z (2016) Deferoxamine pre-treatment protects against postoperative cognitive dysfunction of aged rats by depressing microglial activation via ameliorating iron accumulation in hippocampus. Neuropharmacology 111:180–194. CrossRefPubMedGoogle Scholar
  46. Penke L, Valdés Hernandéz MC, Maniega SM, Gow AJ, Murray C, Starr JM, Bastin ME, Deary IJ, Wardlaw JM (2012) Brain iron deposits are associated with general cognitive ability and cognitive aging. Neurobiol Aging 33:510–517. CrossRefPubMedGoogle Scholar
  47. Pinheiro RM, de Lima MN, Portal BC, Busato SB, Falavigna L, Ferreira RD, Paz AC, de Aguiar BW, Kapczinski F, Schröder N (2015) Long-lasting recognition memory impairment and alterations in brain levels of cytokines and BDNF induced by maternal deprivation: effects of valproic acid and topiramate. J Neural Transm 122:709–719. CrossRefPubMedGoogle Scholar
  48. Pláteník J, Fišar Z, Buchal R, Jirák R, Kitzlerová E, Zvěřová M, Raboch J (2014) GSK3β, CREB, and BDNF in peripheral blood of patients with Alzheimer’s disease and depression. Prog Neuropsychopharmacol Biol Psychiatry 50:83–93. CrossRefPubMedGoogle Scholar
  49. Rodrigue KM, Daugherty AM, Haacke EM, Raz N (2013) The role of hippocampal iron concentration and hippocampal volume in age-related differences in memory. Cereb Cortex 23:1533–1541. CrossRefPubMedGoogle Scholar
  50. Schröder N, Fredriksson A, Vianna MR, Roesler R, Izquierdo I, Archer T (2001) Memory deficits in adult rats following postnatal iron administration. Behav Brain Res 124:77–85. CrossRefPubMedGoogle Scholar
  51. Schröder N, Figueiredo LS, de Lima MN (2013) Role of brain iron accumulation in cognitive dysfunction: evidence from animal models and human studies. J Alzheimers Dis 34:797–812. CrossRefPubMedGoogle Scholar
  52. Silva PF, Garcia VA, da Dornelles AS, Silva VK, Maurmann N, Portal BC, Ferreira RD, Piazza FC, Roesler R, Schröder N (2012) Memory impairment induced by brain iron overload is accompanied by reduced H3K9 acetylation and ameliorated by sodium butyrate. Neuroscience 200:42–49. CrossRefPubMedGoogle Scholar
  53. Sofic E, Salkovic-Petrisic M, Tahirovic I, Sapcanin A, Mandel S, Youdim M, Riederer P (2015) Brain catalase in the streptozotocin-rat model of sporadic Alzheimer’s disease treated with the iron chelator-monoamine oxidase inhibitor, M30. J Neural Transm 122(4):559–564. CrossRefPubMedGoogle Scholar
  54. Sripetchwandee J, Pipatpiboon N, Chattipakorn N, Chattipakorn S (2014) Combined therapy of iron chelator and antioxidant completely restores brain dysfunction induced by iron toxicity. PLoS ONE 9:e85115. CrossRefPubMedPubMedCentralGoogle Scholar
  55. Tanila H (2017) The role of BDNF in Alzheimer’s disease. Neurobiol Dis 97:114–118. CrossRefPubMedGoogle Scholar
  56. Wang G, Hu W, Tang Q, Wang L, Sun XG, Chen Y, Yin Y, Xue F, Sun Z (2016) Effect comparison of both iron chelators on outcomes, iron deposit, and iron transporters after intracerebral hemorrhage in rats. Mol Neurobiol 53:3576–3585. CrossRefPubMedGoogle Scholar
  57. Warburton EC, Brown MW (2015) Neural circuitry for rat recognition memory. Behav Brain Res 285:131–139. CrossRefPubMedPubMedCentralGoogle Scholar
  58. Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L (2014) The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 13:1045–1060. CrossRefPubMedPubMedCentralGoogle Scholar
  59. Wu Q, Zhang XS, Wang HD, Zhang X, Yu Q, Li W, Zhou ML, Wang XL (2014) Astaxanthin activates Nuclear Factor Erythroid-Related Factor 2 and the Antioxidant Responsive Element (Nrf2-ARE) pathway in the brain after subarachnoid hemorrhage in rats and attenuates early brain injury. Mar Drugs 12:6125–6141. CrossRefPubMedPubMedCentralGoogle Scholar
  60. Zhang L, Hu R, Li M, Li F, Meng H, Zhu G, Lin J, Feng H (2013) Deferoxamine attenuates iron-induced long-term neurotoxicity in rats with traumatic brain injury. Neurol Sci 34:639–645. CrossRefPubMedGoogle Scholar
  61. Zhang HY, Song N, Jiang H, Bi MX, Xie JX (2014) Brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor inhibit ferrous iron influx via divalent metal transporter 1 and iron regulatory protein 1 regulation in ventral mesencephalic neurons. Biochim Biophys Acta 1843:2967–2975. CrossRefPubMedGoogle Scholar
  62. Zhang XY, Cao JB, Zhang LM, Li YF, Mi WD (2015) Deferoxamine attenuates lipopolysaccharide-induced neuroinflammation and memory impairment in mice. J Neuroinflam 12:20. CrossRefGoogle Scholar
  63. Zhao L, Hadziahmetovic M, Wang C, Xu X, Song Y, Jinnah HA, Wodzinska J, Iacovelli J, Wolkow N, Krajacic P, Weissberger AC, Connelly J, Spino M, Lee MK, Connor J, Giasson B, Harris ZL, Dunaief JL (2015) Cp/Heph mutant mice have iron-induced neurodegeneration diminished by deferiprone. J Neurochem 135:958–974. CrossRefPubMedPubMedCentralGoogle Scholar
  64. Zucca FA, Segura-Aguilar J, Ferrari E, Muñoz P, Paris I, Sulzer D, Sarna T, Casella L, Zecca L (2017) Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease. Prog Neurobiol 155:96–119. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Luisa Azambuja Alcalde
    • 1
  • Betânia Souza de Freitas
    • 1
  • Gustavo Dalto Barroso Machado
    • 1
  • Pedro Castilhos de Freitas Crivelaro
    • 1
  • Victoria Campos Dornelles
    • 1
  • Henrique Gus
    • 1
  • Ricardo Tavares Monteiro
    • 1
  • Luiza Wilges Kist
    • 2
    • 3
  • Mauricio Reis Bogo
    • 2
    • 3
  • Nadja Schröder
    • 4
    • 5
    Email author
  1. 1.Neurobiology and Developmental Biology Laboratory, Faculty of BiosciencesPontifical Catholic University of Rio Grande do SulPorto AlegreBrazil
  2. 2.Laboratory of Genomics and Molecular Biology, Faculty of BiosciencesPontifical Catholic University of Rio Grande do SulPorto AlegreBrazil
  3. 3.Graduate Program in Medicine and Health SciencesPontifical Catholic University of Rio Grande do SulPorto AlegreBrazil
  4. 4.Departamento de Fisiologia, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  5. 5.National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)BrasíliaBrazil

Personalised recommendations