, Volume 31, Issue 4, pp 627–637 | Cite as

The potential role of spherocrystals in the detoxification of essential trace metals following exposure to Cu and Zn in the fighting conch Strombus (Lobatus) pugilis

  • Jean-Marie Volland
  • Paco Bustamante
  • Dalila Aldana Aranda
  • Olivier Gros


Crypt cells—one of the three cell types composing Strombidae digestive tubules—are characterized by the presence of numerous metal-containing phosphate granules termed spherocrystals. We explored the bioaccumulation and detoxification of metals in Strombidae by exposing wild fighting conch Strombus pugilis for 9 days to waterborne CuSO4 and ZnSO4. The total amount of Cu and Zn was determined in the digestive gland and in the rest of the body by Inductively Coupled Plasma (ICP) analyses. The digestive gland spherocrystal metal content was investigated based on the semi-quantitative energy dispersive X-ray (EDX) elemental analysis. ICP analyses of unexposed individuals revealed that 87.0 ± 5.9% of the Zn is contained in the digestive gland, where its concentration is 36 times higher than in the rest of the body. Regarding Cu, 25.8 ± 16.4% of the metal was located in the digestive gland of the control individuals, increasing to 61.5 ± 16.4% in exposed individuals. Both Cu and Zn concentrations in the digestive gland increased after exposures, pointing to a potential role of this organ in the detoxification of these metals. EDX analysis of spherocrystals revealed the presence of Ca, Cl, Fe, K, Mg, P, and Zn in unexposed individuals. No difference was found in the relative proportion of Zn in spherocrystals of exposed versus control individuals. Contrastingly, copper was never detected in the spherocrystals from controls and Zn-exposed individuals, but the relative proportion of Cu in spherocrystals of Cu-exposed individuals varied from 0.3 to 5.7%. Our results show the direct role of spherocrystals in Cu detoxification.


Exposure Mollusca Phosphate granule Trace metal Ultrastructure 



This work was supported by a grant from ECOS-NORD 2008–2013 (MO9A2). We thank Manuel Sanchez and Marcela del Río from the CINVESTAV Mérida for their support in conducting the experiments. We also thank Carine Churlaud from the Plateforme Analyses Elémentaires of the LIENSs laboratory for carrying out ICP analyses. The IUF (Institut Universitaire de France) is acknowledged for its support to PB as a Senior Member. Electron microscopy work was performed at the C3MAG laboratory in Guadeloupe.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. Aldana Aranda D (2003) El Caracol Strombus gigas: Conocimiento Integral Para Su Manejo Sustentable En El Caraibe. Impressos profesionales Aranda, YucatanGoogle Scholar
  2. Amiard JC, Amiard-Triquet C, Barka S, Pellerin J, Rainbow PS (2006) Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquat Toxicol 76:160–202CrossRefPubMedGoogle Scholar
  3. Ballan-Dufrançais C (2002) Localization of metals in cells of pterygote insects. Microsc Res Techniq 56:403–420CrossRefGoogle Scholar
  4. Baqueiro Cárdenas E, Frenkiel L, Zetina Zarate AI, Aldana Aranda D (2007) Coccidian (apicomplexa) parasite infecting Strombus gigas Linné, 1758 digestive gland. J Shellfish Res 26:319–321CrossRefGoogle Scholar
  5. Boghen A, Farley J (1974) Phasic activity in the digestive gland cells of the intertidal prosobranch, Littorina saxatilis (olivi) and its relations to the tidal cycle. J Molluscan Stud 41:41–55CrossRefGoogle Scholar
  6. Coelho L, Prince J, Nolen TG (1998) Processing of defensive pigment in Aplysia californica: acquisition, modification and mobilization of the red algal pigment, r-phycoerythrin by the digestive gland. J Exp Biol 201:425–438PubMedGoogle Scholar
  7. Costa PM, Rodrigo AP, Costa MH (2014) Microstructural and histochemical advances on the digestive gland of the common cuttlefish, Sepia officinalis L. Zoomorphology 133:59–69CrossRefGoogle Scholar
  8. Delakorda SL, Letofsky-Papst I, Novak T, Giovannelli M, Hofer F, Pabst MA (2008) Application of elemental microanalysis to elucidate the role of spherites in the digestive gland of the helicid snail Chilostoma lefeburiana. J Microsc 231:38–46CrossRefPubMedGoogle Scholar
  9. Devi C, Rao КH, Shyamasundari К (1981) Observations on the histology and cytochemistry of the digestive gland in Pila virens (Lamarck) (Mollusca: Gastropoda). Proc Anim Sci 90(3):307–314CrossRefGoogle Scholar
  10. Fretter V, Graham A (1962) British prosobranch molluscs: their functional anatomy and ecology. The Ray Society Series, LondonGoogle Scholar
  11. Gabe M (1968) Techniques histologiques. Paris Masson et Cie, ParisGoogle Scholar
  12. Gallien I, Caurant F, Bordes M, Bustamante P, Miramand P, Fernandez B, Quellard N, Babin P (2001) Cadmium-containing granules in kidney tissue of the atlantic white-sided dolphin (Lagenorhyncus acutus) off the Faroe islands. Comp Biochem Physiol C 130:389–395Google Scholar
  13. George SG, Pirie BJS, Coombs TL (1980) Isolation and elemental analysis of metal-rich granules from the kidney of the scallop, Pecten maximus (L.). J Exp Mar Biol Ecol 42:143–156CrossRefGoogle Scholar
  14. George SG, Coombs TL, Pirie BJS (1982) Characterization of metal-containing granules from the kidney of the common mussel, Mytilus edulis. BBA 716:61–71Google Scholar
  15. George SG, Pirie BJ, Frazier JM, Thomson JD (1984) Interspecies differences in heavy metal detoxication in oysters. Mar Environ Res 14:462–464CrossRefGoogle Scholar
  16. Gibbs PE, Nott JA, Nicolaidou A, Bebianno MJ (1998) The composition of phosphate granules in the digestive glands of marine prosobranch gastropods: variation in relation to taxonomy. J Molluscan Stud 64:423–433CrossRefGoogle Scholar
  17. Greaves GN, Simkiss K, Taylor M, Binsted N (1984) The local environment of metal sites in intracellular granules investigated by using X-ray-absorption spectroscopy. Biochem J 221:855–868CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gros O, Frenkiel L, Aldana Aranda D (2009) Structural analysis of the digestive gland of the queen conch Strombus gigas Linnaeus, 1758 and its intracellular parasites. J Molluscan Stud 75:59–68CrossRefGoogle Scholar
  19. Guo F, Tu R, Wang WX (2013) Different responses of abalone Haliotis discus hannai to waterborne and dietary-borne copper and zinc exposure. Ecotoxicol Environ Saf 91:10–17CrossRefPubMedGoogle Scholar
  20. Henry M (1984a) Ultrastructure des tubules digestifs d’un mollusque bivalve marin, la palourde Ruditapes decussatus L., en métabolisme de routine. II la cellule sécrétrice. Vie Mar 6:17–24Google Scholar
  21. Henry M (1984b) Ultrastructure des tubules digestifs d’un mollusque bivalve marin, la palourde Ruditapes decussatus L., en métabolisme de routine. I la cellule digestive. Vie Mar 6:7–15Google Scholar
  22. Howard B, Mitchell PC, Ritchie A, Simkiss K, Taylor M (1981) The composition of intracellular granules from the metal-accumulating cells of the common garden snail (Helix aspersa). Biochem J 194:507–511CrossRefPubMedPubMedCentralGoogle Scholar
  23. Jenkins CD, Ward ME, Turnipseed M, Osterberg J, Lee Van Dover C (2002) The digestive system of the hydrothermal vent polychaete Galapagomystides aristata (Phyllodocidae): evidence for hematophagy? Invertebr Biol 121:243–254CrossRefGoogle Scholar
  24. Kojadinovic J, Jackson CH, Cherel Y, Jackson GD, Bustamante P (2011) Multi-elemental concentrations in the tissues of the oceanic squid Todarodes filippovae from Tasmania and the Southern Indian Ocean. Ecotoxicol Environ Safety 74(5):1238–1249CrossRefPubMedGoogle Scholar
  25. Le Pabic C, Caplat C, Lehodey JP, Milinkovitch T, Koueta N, Cosson RP, Bustamante P (2015) Trace metal concentrations in post-hatching cuttlefish Sepia officinalis and consequences of dissolved zinc exposure. Aquat Toxicol 159:23–35CrossRefPubMedGoogle Scholar
  26. Lobo-da-Cunha A (1997) The peroxisomes of the hepatopancreas in two species of chitons. Cell Tissue Res 290:655–664CrossRefPubMedGoogle Scholar
  27. Lobo-da-Cunha A (1999) Ultrastructural and cytochemical aspects of the basophilic cells in the hepatopancreas of Aplysia depilans (Mollusca, Opisthobranchia). Tissue Cell 31:8–16CrossRefPubMedGoogle Scholar
  28. Lobo-Da-Cunha A (2000) The digestive cells of the hepatopancreas in Aplysia depilans (Mollusca, Opisthobranchia): ultrastructural and cytochemical study. Tissue Cell 32:49–57CrossRefPubMedGoogle Scholar
  29. Luchtel DL, Martin AW, Deyrup-Olsen I, Boer HH (1997) Gastropoda: Pulmonata. In: Harrison WF, Kohn AJ (eds) Microscopic anatomy of invertebrates. Wiley-Liss, New York, p 459Google Scholar
  30. Lutfy RG, Demain ES (1967) The histology of the alimentary system of Marisa cornuarietis. Malacologia 5:375–422Google Scholar
  31. Marigómez I, Soto M, Cajaraville MP, Angulo E, Giamberini L (2002) Cellular and subcellular distribution of metals in molluscs. Microsc Res Technol 56:358–392CrossRefGoogle Scholar
  32. Martoja M, Marcaillou C (1993) Localisation cytologique du cuivre et de quelques autres métaux dans la glande digestive de la seiche, Sepia officinalis L. (mollusque céphalopode). Can J Fish Aquat Sci 50(3):542–550CrossRefGoogle Scholar
  33. Masala O, O’Brien P, Rainbow PS (2004) Analysis of metal-containing granules in the barnacle Tetraclita squamosa. J Inorg Biochem 98:1095–1102CrossRefPubMedGoogle Scholar
  34. Merdsoy B, Farley J (1973) Phasic activity in the digestive gland cells of the marine prosobranch gastropod, Littorina littorea (L.). J Molluscan Stud 40:473–482Google Scholar
  35. Mitchell PCH, Parker SF, Simkiss K, Simmons J, Taylor MG (1996) Hydrated sites in biogenic amorphous calcium phosphates: an infrared, raman, and inelastic neutron scattering study. J Inorg Biochem 62:183–197CrossRefGoogle Scholar
  36. Morse MP, Zardas JD, Harrison FW, Kohn AJ (1997) Bivalvia. In: Harrison FW (ed) Microscopic anatomy of invertebrates, Mollusca II, vol 6A. Wiley-Liss, New York, p 7Google Scholar
  37. Mouneyrac C, Mastain O, Amiard JC, Amiard-Triquet C, Beaunier P, Jeantet AY, Smith BD, Rainbow PS (2003) Trace-metal detoxification and tolerance of the estuarine worm Hediste diversicolor chronically exposed in their environment. Mar Biol 143:731–744CrossRefGoogle Scholar
  38. Nelson L, Morton JE (1979) Cyclic activity and epithelial renewal in the digestive gland tubules of the marine prosobranch Maoricrypta monoxyla (lesson). J Molluscan Stud 45:262–283Google Scholar
  39. Nieboer E, Richardson DHS (1980) The replacement of the nondescript term ‘heavy metals’ by a biologically and chemically significant classification of metal ions. Environ Pollut B 1(1):3–26CrossRefGoogle Scholar
  40. Nott JA, Langston WJ (1989) Cadmium and the phosphate granules in Littorina littorea. J Mar Biol Assoc UK 69:219–227CrossRefGoogle Scholar
  41. Nott J, Nicolaidou A (1989) The cytology of heavy metal accumulations in the digestive glands of three marine gastropods. Proc R Soc London B 237:347–362CrossRefGoogle Scholar
  42. Nott JA, Nicolaidou A (1990) Transfer of metal detoxification along marine food chains. J Mar Biol Assoc UK 70:905–912CrossRefGoogle Scholar
  43. Nott JA, Nicolaidou A (1993) Bioreduction of zinc and manganese along a molluscan food chain. Comp Biochem Physiol A 104:235–238CrossRefGoogle Scholar
  44. Nott JA, Nicolaidou A (1996) Kinetics of metals in molluscan faecal pellets and mineralized granules, incubated in marine sediments. J Exp Mar Biol Ecol 197:203–218CrossRefGoogle Scholar
  45. Nott JA, Bebianno MJ, Langston WJ, Ryan KP (1993) Cadmium in the gastropod Littorina littorea. J Mar Biol Assoc UK 73:655–665CrossRefGoogle Scholar
  46. Owen G (1966) Digestion. In: Wilbur KM, Yonge CM (eds) Physiology of Mollusca. Academic Press, New York and London, p 53CrossRefGoogle Scholar
  47. Pal SG (1971) The fine structure of the digestive tubules of Mya arenaria L. basiphil cell. J Molluscan Stud 39:303–309Google Scholar
  48. Pal SG (1972) The fine structure of the digestive tubules of Mya arenaria L. II digestive cell. J Molluscan Stud 40:161–170Google Scholar
  49. Penicaud V, Lacoue-Labarthe T, Bustamante P (2017) Metal bioaccumulation and detoxification processes in cephalopods: a review. Environ Res 155:123–133CrossRefPubMedGoogle Scholar
  50. Porcel D, Bueno J, Almendros A (1996) Alterations in the digestive gland and shell of the snail Helix aspersa Müller (Gastropoda, Pulmonata) after prolonged starvation. Comp Biochem Physiol A 115:11–17CrossRefGoogle Scholar
  51. Pullen JSH, Rainbow PS (1991) The composition of pyrophosphate heavy metal detoxification granules in barnacles. J Exp Mar Biol Ecol 150:249–266CrossRefGoogle Scholar
  52. Purchon RD (1968) The biology of the Mollusca. Pergamon Press, HungaryGoogle Scholar
  53. Rizo OD, Reumont SO, Fuente JV, Arado OD, Pino NL, Rodríguez KD, López JOA, Rudnikas AG, Carballo GA (2010) Copper, zinc and lead bioaccumulation in marine snail, Strombus gigas, from Guacanayabo Gulf, Cuba. Bull Environ Contam Toxicol 85:330–333CrossRefGoogle Scholar
  54. Sabri S, Said MIM, Azman S (2014a) Lead (Pb) and zinc (Zn) concentrations in marine gastropod Strombus canarium in Johor coastal areas. Malays J Anal Sci 18:37–42Google Scholar
  55. Sabri S, Said MIM, Azman S (2014b) Marine gastropod Strombus canarium as bioindicator for lead and zinc contamination. J Teknol 69:5–9Google Scholar
  56. Said MIM, Sabri S, Azman S, Muda K (2013) Arsenic, cadmium and copper in gastropod Strombus canarium in western part of Johor straits. World Appl Sci J 23:734–739Google Scholar
  57. Semmens JM (2002) Changes in the digestive gland of the loliginid squid Sepioteuthis lessoniana (lesson 1830) associated with feeding. J Exp Mar Biol Ecol 274:19–39CrossRefGoogle Scholar
  58. Spade DJ, Griffitt RJ, Liu L, Brown-Peterson NJ, Kroll KJ, Feswick A, Glazer OA, Barber DS, Denslow ND (2010) Queen conch (Strombus gigas) testis regresses during the reproductive season at nearshore sites in the Florida keys. PLoS ONE 5:1–14CrossRefGoogle Scholar
  59. Swift K, Johnston D, Moltschaniwskyj N (2005) The digestive gland of the southern dumpling squid (Euprymna tasmanica): structure and function. J Exp Mar Biol Ecol 315:177–186CrossRefGoogle Scholar
  60. Taïeb N (2001) Distribution of digestive tubules and fine structure of digestive cells of Aplysia punctata (Cuvier, 1803). J Molluscan Stud 67:169–182CrossRefGoogle Scholar
  61. Taïeb N, Vicente N (1999) Histochemistry and ultrastructure of the crypt cells in the digestive gland of Aplysia punctata (Cuvier, 1803). J Molluscan Stud 65:385–398CrossRefGoogle Scholar
  62. Taylor MG, Simkiss K, Greaves GN (1989) Metal environments in intracellular granules—iron. Phys B 158:112–114CrossRefGoogle Scholar
  63. Taylor MG, Greaves GN, Simkiss K (1990) Biotransformation of intracellular minerals by zinc ions in vivo and in vitro. Eur J Biochem 192:783–789CrossRefPubMedGoogle Scholar
  64. Triebskorn R, Higgins R, Körtje K, Storch V (1996) Localization of iron stores and iron binding sites in blood cells of five different priapulid species by energy-filtering electron microscopy (EFTEM). J Trace Microprobe Tech 14:775–797Google Scholar
  65. Van Holde KE, Miller KI (1995) Hemocyanins. Adv Protein Chem 47:1–81CrossRefPubMedGoogle Scholar
  66. Volland JM (2010) Interaction durable Strombidae-Sporozoairess et fonctionnement de l’organe hôte de la relation: la glande digestive. Doctoral dissertation, Université des Antilles GuyaneGoogle Scholar
  67. Volland JM, Gros O (2012) Cytochemical investigation of the digestive gland of two Strombidae species (Strombus gigas and Strombus pugilis) in relation to the nutrition. Microsc Res Tech 75:1353–1360CrossRefPubMedGoogle Scholar
  68. Volland JM, Frenkiel L, Aldana Aranda D, Gros O (2010) Occurrence of sporozoa-like microorganisms in the digestive gland of various species of Strombidae. J Molluscan Stud 76:196–198CrossRefGoogle Scholar
  69. Volland JM, Lechaire JP, Frebourg G, Aldana Aranda D, Ramdine G, Gros O (2012) Insight of EDX analysis and EFTEM: are spherocrystals located in Strombidae digestive gland implied in detoxification of trace metals? Microsc Res Tech 75:425–432CrossRefPubMedGoogle Scholar
  70. Voltzow J (1994) Gastropoda: Prosobranchia. In: Frederick W, Harrison W (eds) Microscopic anatomy of invertebrates. Wiley, New York, p 111Google Scholar
  71. Walker G (1970) The cytology, histochemistry, and ultrastructure of the cell types found in the digestive gland of the slug, Agriolimax reticulatus (Müller). Protoplasma 71:91–109CrossRefGoogle Scholar
  72. Whitall D, Ramos A, Wehner D, Fulton M, Mason A, Wirth E, West B, Pait A, Pisarski E, Shaddrix B, Reed LA (2016) Contaminants in queen conch (Strombus gigas) in Vieques, Puerto Rico. Reg Stud Mar Sci 5:80–86CrossRefGoogle Scholar
  73. Wigham GD (1976) Feeding and digestion in the marine prosobranch Rissoa parva (da Costa). J Molluscan Stud 42:74–94Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jean-Marie Volland
    • 1
  • Paco Bustamante
    • 2
  • Dalila Aldana Aranda
    • 3
  • Olivier Gros
    • 1
  1. 1.UMR 7138 CNRS-UPMC “Evolution Paris Seine” Team Biologie de la mangrove, Université des Antilles, U.F.R SEN, Département de Biologie B.P. 592Pointe-á-Pitre CedexFrance
  2. 2.Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La RochelleLa RochelleFrance
  3. 3.Laboratorio de Conservación, Cultivo y Biología de Moluscos, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad MéridaMéridaMexico

Personalised recommendations