Skip to main content
Log in

X-ray structure of bovine heart cytochrome c at high ionic strength

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Bovine heart cytochrome c (bCyt c) is an extensively studied hemoprotein of only 104 residues. Due to the existence of isoforms generated by non-enzymatic deaminidation, crystallization of bCyt c is difficult and involves extensive purification and the use of microseeding or the presence of an electric field. Taking advantage of the capacity of cytochrome c (cyt c) to bind anions on its protein surface, the commercially available bCyt c was crystallized without extra purifications, using ammonium sulfate as precipitant and nitrate ions as additives. The structure of the ferric bCyt c in a new crystal form is described and compared with that previously solved at low ionic strength and with those of human and horse cyt c. The overall structure of bCyt c is conserved, while the side chains of several residues that play a role in the interactions of cyt c with its partners have different rotamers in the two structures. The effect of the presence of nitrate ions on the structure of the protein is then evaluated and compared with that observed in the case of ferrous and ferric horse heart cyt c.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alvarez-Paggi D, Hannibal L, Castro MA et al (2017) Multifunctional cytochrome c: learning new tricks from an old dog. Chem Rev 117(21):13382–13460

    Article  CAS  PubMed  Google Scholar 

  • Banci L, Bertini I, Gray HB, Luchinat C, Reddig T, Rosato A, Turano P (1997) Solution structure of oxidized horse heart cytochrome c. Biochemistry 36:9867–9877

    Article  CAS  PubMed  Google Scholar 

  • Battistuzzi G, Borsari M, Dallari D, Lancellotti I, Sola M (1996) Anion binding to mitochondrial cytochromes c studied through electrochemistry. Effects of the neutralization of surface charges on the redox potential. Eur J Biochem 241:208–214

    Article  CAS  PubMed  Google Scholar 

  • Bertini I, Chevance S, Del Conte R, Lalli D, Turano P (2011) The anti-apoptotic Bcl-XL protein, a new piece in the puzzle of cytochrome c interactome. PLoS ONE 6(4):e18329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng TC, Hong C, Akey IV, Yuan S, Akey CW (2016) A near atomic structure of human apoptosome. ELife 5:e17755

    PubMed  PubMed Central  Google Scholar 

  • Cortese JD, Voglino AL, Hackenbroch CR (1995) Persistence of cytochrome c binding to membranes at physiological mitochondrial intermembrane space ionic strength. Biochim Biophys Acta Bioenerg 1228:216–228

    Article  Google Scholar 

  • De March M, Demitri N, De Zorzi R, Casini A, Gabbiani G, Guerri A, Messori L, Geremia S (2014) Nitrate as a probe of cytochrome c surface: crystallographic identification of crucial “hot spots” for protein–protein recognition. J Inorg Biochem 135:58–67

    Article  PubMed  Google Scholar 

  • De Rocco D, Cerqua C, Np Goffrini, Russo G, Pastore A, Meloni F, Nicchia E, Moraes CT, Pecci A, Salviati L et al (2014) Mutations of cytochrome c identified in patients with thrombocytopenia THC4 affect boith apoptosis and cellular bioenergetics. Biochim Biophys Acta Mol Basis Dis 1842:269–274

    Article  Google Scholar 

  • Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr Sect D Biol Crystallogr 66:486–501

    Article  CAS  Google Scholar 

  • Ferraro G, Messori L, Merlino A (2015) The X-ray structure of the primary adducts formed in the reaction between cisplatin and cytochrome c. Chem Commun (Camb) 51(13):2559–2561

    Article  CAS  Google Scholar 

  • Josephs TM, Liptak MD, Hughes G, Lo A, Smith RM, Wilbanks SM, Bren KL, Ledgerwood EC (2013) Conformational change and human cytochrome c function: mutation of residue 41 modulates caspase activation and destabilizes Met-80 coordination. J Biol Inorg Chem 18(3):289–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabsch W (2010) XDS. Acta Crystallogr Sect D Biol Crystallogr 66:125–132

    Article  CAS  Google Scholar 

  • Kantardjieff KA, Rupp B (2003) Matthews coefficient probabilities: improved estimates for unit cell contents of proteins, DNA, and protein-nucleic acid complex crystals. Protein Sci 12:1865–1871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai C, Prado FM, Nunes GLC, Di Mascio P, Carmona-Ribeiro AM, Nantes IL (2005) pH-dependent interaction of cytochrome c with mitochondrial mimetic membrane: the role of an array of positively charged amino acids. J Biol Chem 280:34709–34717

    Article  CAS  PubMed  Google Scholar 

  • Kubota T, Homma K, Noda J, Yamane T, Ataka M (2001) Importance of nitrate in the crystal growth of cytochrome c from four biological species judged by morphodrom analysis. J Cryst Growth 233:813–822

    Article  CAS  Google Scholar 

  • Lange C, Hunte C (2002) Crystal structure of the yeast cytochrome bc1 complex with its bound substrate cytochrome c. Proc Natl Acad Sci USA 99:2800–2805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  • Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell (Camb, Mass) 91:479–489

    Article  CAS  Google Scholar 

  • Liu Z, Lin H, Ye S, Liu QY, Meng Z, Zhang CM, Xia Y, Margoliash E, Rao Z, Liu XJ (2006) Remarkably high activities of testicular cytochrome c in destroying reactive oxygen species and in triggering apoptosis. Proc Natl Acad Sci USA 103:8965–8970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margoliash E (1963) Primary structure and evolution of cytochrome c. Proc Natl Acad Sci USA 50:672–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massa EM, Giulivi C (1993) Alkoxyl and methyl radical formation during cleavage of tert-butyl hydroperoxide by a mitochondrial membrane-bound, redox active copper pool: an EPR study. Free Radic Biol Med 14:559–565

    Article  CAS  PubMed  Google Scholar 

  • McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLendon G, Smith M (1978) Equilibrium and kinetic studies of unfolding of homologous cytochromes c. J Biol Chem 253:4004–4008

    CAS  PubMed  Google Scholar 

  • McPherson A, Nguyen C, Cudney R, Larson SB (2011) The role of small molecule additives and chemical modification in protein crystallization. Cryst Growth Des 11:1469–1474

    Article  CAS  Google Scholar 

  • Mirkin N, Jaconcic J, Sotjanoff V, Moreno A (2008) High resolution X-ray crystallographic structure of bovine heart cytochrome c and its application to the design of an electron transfer biosensor. Proteins 70:83–92

    Article  CAS  PubMed  Google Scholar 

  • Monari S, Battistuzzi G, Borsari M, Millo D, Gooijer C, van der Zwan G, Ranieri A (2008) Sola M (2008) Thermodynamic and kinetic aspects of the electron transfer reaction of bovine cytochrome c immobilized on 4-mercaptopyridine and 11-mercapto-1-undecanoic acid films. J Appl Electrochem 38:885–891

    Article  CAS  Google Scholar 

  • Moore GR, Pettigrew GW (1990) Cytochromes c: evolutionary, structural, and physicochemical aspects. Springer, Berlin

    Book  Google Scholar 

  • Moreno-Beltrán B, Guerra-Castellano A, Díaz-Quintana A, Del Conte R, García-Mauriño SM, Díaz-Moreno S, González-Arzola K, Santos-Ocaña C, Velázquez-Campoy A, De la Rosa MA, Turano P, Díaz-Moreno I (2017) Structural basis of mitochondrial dysfunction in response to cytochrome c phosphorylation at tyrosine 48. Proc Natl Acad Sci USA 114(15):E3041–E3050

    Article  PubMed  PubMed Central  Google Scholar 

  • Morison IM, Cramer Borse EM, Cheesman EJ, Cheong PL, Holoyoaske AJ, Fichelson S, Weeks RJ, Lo A, Davies SM, Wilbanks S et al (2008) A mutation of human cytochrome c enhances the intrinsic apoptotic pathway but causes only thrombocytopenia. Nat Genet 40:387–389

    Article  CAS  PubMed  Google Scholar 

  • Moza B, Qureshi SH, Ahmad F (2003) Equilibrium studies of the effect of difference in sequence homology on the mechanism of denaturation of bovine and horse cytochromes-c. Biochim Biophys Acta 1646(1–2):49–56

    Article  CAS  PubMed  Google Scholar 

  • Muneeswaran G, Kartheeswaran S, Muthukumar K, Karunakaran C (2018) Temperature-dependent conformational dynamics of cytochrome c: implications in apoptosis. J Mol Graph Model 79:140–148

    Article  CAS  PubMed  Google Scholar 

  • Muneeswaran G, Kartheeswaran S, Muthukumar K, Dharmaraj CD, Karunakaran C (2017) Effects of different solvents on the conformations of apoptotic cytochrome c: structural insights from molecular dynamics simulation. J Mol Graph Model 76:234–241

    Article  CAS  PubMed  Google Scholar 

  • Murshudov GN, Vagin AA, Dodson E (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr Sect D Biol Crystallogr 53:240–255

    Article  CAS  Google Scholar 

  • Pan P, McLuckey SA (2003) The effect of small cations on the positive electrospray responses of proteins at low pH. Anal Chem 75(20):5468–5474

    Article  CAS  PubMed  Google Scholar 

  • Pelletier H, Kraut J (1992) Crystal structure of a complex between electron transfer partners cytochrome c peroxidase and cytochrome c. Science 258:1748–1755

    Article  CAS  PubMed  Google Scholar 

  • Rajagopal BS, Edzuma AN, Hough MA, Blundell KLIM, Kagan VE, Kapralov AA, Fraser LA, Butt JN, Silkstone GG, Wilson MT, Svistunenko DA, Worrall JAR (2013) The hydrogen peroxide induced radical behaviour in human cytochrome c phospholipid complexes: implications for the enhanced pro-apoptotic activity of the G41S mutant. Biochem J 456:441–452

    Article  CAS  PubMed  Google Scholar 

  • Rytömaa M, Kinnunen PK (1995) Reversibility of the binding of cytochrome c to liposomes. Implications for lipid-protein interactions. J Biol Chem 270(7):3197–3202

    Article  PubMed  Google Scholar 

  • Russo Krauss I, Merlino A, Vergara A, Sica F (2013) An overview of biological macromolecule crystallization. Int J Mol Sci 14:11643–11691

    Article  PubMed  Google Scholar 

  • Russo Krauss I, Ferraro G, Pica A, Márquez J, Helliwell JR, Merlino A (2017) Principles and methods used to grow and optimize crystals of protein-metallodrug adducts, to determine metal binding sites and to assign metal ligands. Metallomics 9:1534–1547

    Article  CAS  PubMed  Google Scholar 

  • Sanishvili R, Voltz KW, Westbrook EM, Margoliash E (1995) The low ionic strength crystal structure of horse cytochrome c at 2.1 Å resolution and comparison with its high ionic strength counterpart. Structure 3(7):707–716

    Article  CAS  PubMed  Google Scholar 

  • Schrodinger LLC (2015) The PyMOL molecular graphics system. Version, 1 (8). www.pymol.org

  • Scott RA, Mauk GA (eds) (1996) Cytochrome c: a multidisciplinary approach. University Science Books, Sausalito

    Google Scholar 

  • Sinibaldi F, Fiorucci L, Patriarca A, Lauceri R, Ferri T, Coletta M, Santucci R (2008) Insights into cytochrome c-cardiolipin interaction. Role played by ionic strength. Biochemistry. 47(26):6928–6935

    Article  CAS  PubMed  Google Scholar 

  • Sinibaldi F, Milazzo L, Howes BD, Piro MC, Fiorucci L, Polticelli F, Ascenzi P, Coletta M, Smulevich G, Santucci R (2017) The key role played by charge in the interaction of cytochrome c with cardiolipin. J Biol Inorg Chem 22(1):19–29

    Article  CAS  PubMed  Google Scholar 

  • Takekiyo T, Ishikawa Y, Yoshimura Y (2017) Cryopreservation of proteins using ionic liquids: a case study of cytochrome c. J Phys Chem B 121(32):7614–7620

    Article  CAS  PubMed  Google Scholar 

  • Trewhella J, Carlson VAP, Curtis EH, Heidorn D (1988) Differences in the solution structures of oxidized and reduced cytochrome c measured by small-angle X-ray scattering. Biochemistry 27:1121–1125

    Article  CAS  PubMed  Google Scholar 

  • Vonrhein C, Flensburg C, Keller P, Sharff A, Smart O, Paciorek W, Womack T, Bricogne G (2011) Data processing and analysis with the autoPROC toolbox. Acta Crystallogr Sect D Biol Crystallogr 67:293–302

    Article  CAS  Google Scholar 

  • Wegerich F, Turano P, Allegrozzi M, Möhwald H, Lisdat F (2011) Electroactive multilayer assemblies of bilirubin oxidase and human cytochrome C mutants: insight in formation and kinetic behavior. Langmuir 27(7):4202–4211

    Article  CAS  PubMed  Google Scholar 

  • Wegerich F, Giachetti A, Allegrozzi M, Lisdat F, Turano P (2013) Mechanistic insights into the superoxide-cytochrome c reaction by lysine surface scanning. J Biol Inorg Chem 18(4):429–440

    Article  CAS  PubMed  Google Scholar 

  • Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AGW, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read RJ, Vagin A, Wilson KS (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr Sect D Biol Crystallogr 67:235–242

    Article  CAS  Google Scholar 

  • Yadaiah M, Rao PN, Harish P, Bhuyan AK (2007) High affinity binding of Bcl-XL to cytochrome c:possible relevance for interception of translocated cytochrome c in apoptosis. Biochim Biophys Acta 1774:1370–1379

    Article  CAS  PubMed  Google Scholar 

  • Zhao D, Li L, Zhou J (2018) Simulation insight into the cytochrome c adsorption on graphene and graphene oxide surfaces. Appl Surf Sci 428:825–834

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author acknowledges students for his lab for technical assistance and members of ESRF staff for their help with data collection and processing.

Funding

This study was funded by University of Naples Federico II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonello Merlino.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merlino, A. X-ray structure of bovine heart cytochrome c at high ionic strength. Biometals 31, 277–284 (2018). https://doi.org/10.1007/s10534-018-0090-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-018-0090-x

Keywords

Navigation