Skip to main content

Advertisement

Log in

TiO2 and its composites as promising biomaterials: a review

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

TiO2 is a well-known material and has remarkable physical, chemical and biocompatible properties which have made it a suitable material in the biological world. The development of new TiO2-based materials is strongly required to achieve desired properties and applications. A large number of TiO2 composites have been synthesized and applied in various fields. The present review reports the utility of TiO2 and its composites in biosensing, in Photodynamic Therapy, as an antimicrobial agent and as a nanodrug carrier. The aim of this review is to discuss the biological application of the TiO2 based materials and some recent advancement in TiO2 to enhance its application in the biological world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albrektsson T, Brånemark PI, Hansson HA et al (1981) Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 52:155–170

    Article  CAS  PubMed  Google Scholar 

  • Ansari AA, Sumana G, Pandey MK et al (2009) Sol–gel derived titanium oxide–cerium oxide biocompatible nanocomposite film for urea sensor. J Mater Res 24:1667–1673

    Article  CAS  Google Scholar 

  • Ashkarran AA, Hamidinezhad H, Haddadic H et al (2014) Double-doped TiO2 nanoparticles as an efficient visible-light-active photocatalyst and antibacterial agent under solar simulated light. Appl Surf Sci 301:338–345

    Article  CAS  Google Scholar 

  • Aw MS, Losic D (2013) Ultrasound enhanced release of therapeutics from drug-releasing implants based on titaniananotube arrays. Int J Pharm 443:154–162

    Article  CAS  PubMed  Google Scholar 

  • Aw MS, Addai-Mensah J, Losic D (2012) Magnetic-responsive delivery of drug-carriers using titania nanotube arrays. J Mater Chem 22:6561–6563

    Article  CAS  Google Scholar 

  • Aw MS, Kurian M, Losic D (2014) Non-eroding drug-releasing implants with ordered nanoporous and nanotubular structures: concepts for controlling drug release. Biomater Sci 2:10–34

    Article  CAS  Google Scholar 

  • Aysin B, Ozturk A, Par J (2013) Silver-loaded TiO2 powders prepared through mechanical ball milling. Ceram Int 39:7119–7126

    Article  CAS  Google Scholar 

  • Bae IH, Yun KD, Kim HS et al (2010) Anodic oxidized nanotubular titanium implants enhance bone morphogenetic protein-2 delivery. J Biomed Mater Res B 93:484–491

    Article  CAS  Google Scholar 

  • Baifu X, Zhiyu R, Haiyuan H et al (2005) Photocatalytic activity and interfacial carrier transfer of Ag–TiO2 nanoparticle films. Appl Surf Sci 252:2050–2055

    Article  CAS  Google Scholar 

  • Benvenuto P, Kafi AKM, Chen A (2009) High performance glucose biosensor based on the immobilization of glucose oxidase onto modified titania nanotube arrays. J Electroanal Chem 627:76–81

    Article  CAS  Google Scholar 

  • Bjursten LM, Rasmusson L, Oh S et al (2010) Titanium dioxide nanotubes enhance bone bonding in vivo. J Biomed Mater Res A 92:1218–1224

    PubMed  Google Scholar 

  • Cai K, Jiang F, Luo Z et al (2010) Temperature-responsive controlled drug delivery system based on titanium nanotubes. Adv Eng Mater 12:B565–B570

    Article  CAS  Google Scholar 

  • Camire CL, Saint-Jean SJ, Mochales C et al (2005) Material characterization and in vivo behavior of silicon substituted α-tricalcium phosphate cement. J Biomed Mater Res B 76:424–431

    Google Scholar 

  • Carr ME, Krischnaswami A, Martin E (2007) Method of using platelet contractile force and whole blood clot elastic modulus as clinical markers. US patent no 7:192,726

  • Chen X, Yang Z, Si S (2009) Potentiometric urea biosensor based on immobilization of urease onto molecularly imprinted TiO2 film. J Electroanal Chem 635:1

    Article  CAS  Google Scholar 

  • Chen R, Wang X, Yao X et al (2013) Near-IR-triggered photothermal/photodynamic dual-modality therapy system via chitosan hybrid nanospheres. Biomaterials 34:8314–8322

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Meyers JD, Broome AM et al (2011) Deep penetration of a PDT drug into tumors by noncovalent drug-gold nanoparticle conjugates. J Am Chem Soc 133:2583–2591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chenga C, Sunb Y (2012) Carbon doped TiO2 nanowire arrays with improved photoelectrochemical water splitting performance. Appl Surf Sci 263:273–276

    Article  CAS  Google Scholar 

  • Cooley JD, Wong WC, Jumper CA et al (1998) Correlation between the prevalence of certain fungi and sick building syndrome. Occup Environ Med 55:579–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordero-García A, Guzmán-Mar JL, Hinojosa-Reyes L et al (2016) Effect of carbon doping on WO3/TiO2 coupled oxide and its photocatalytic activity on diclofenac degradation. Ceram Int 42:9796–9803

    Article  CAS  Google Scholar 

  • Cui J, Chen S, Liu H et al (2014) Nano-p–n junction heterostructures enhanced TiO2 nanobelts biosensing electrode. J Solid State Electrochem 18:2693–2699

    Article  CAS  Google Scholar 

  • Deng R, Xie X, Vendrell M et al (2011) Intracellular glutathione detection using MnO2-nanosheet-modified upconversion nanoparticles. J Am Chem Soc 133:20168–20171

    Article  CAS  PubMed  Google Scholar 

  • Dette C, Pérez-Osorio MA, Kley CS et al (2014) TiO2 anatase with a bandgap in the visible region. Nano Lett 14:6533–6538

    Article  CAS  PubMed  Google Scholar 

  • Dillon HK, Miller JD, Sorenson WG et al (1999) Review of methods applicable to the assessment of mold exposure to children. Environ Health Perspect 107:473–480

    Article  PubMed  PubMed Central  Google Scholar 

  • Dreaden EC, Austin LA, Mackey MA et al (2012) Size matters: gold nanoparticles in targeted cancer drug delivery. Ther Deliv 3:457–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durocher S, Rezaee A, Hamm C et al (2009) Disulfide-linked, gold nanoparticle based reagent for detecting small molecular weight thiols. J Am Chem Soc 131:2475–2477

    Article  CAS  PubMed  Google Scholar 

  • Ercan B, Taylor E, Alpaslan E et al (2011) Diameter of titanium nanotubes influences anti-bacterial efficacy. Nanotechnology 22:295102–295112

    Article  PubMed  CAS  Google Scholar 

  • Fan Y, Huang KJ, Niu DJ et al (2011a) TiO2-graphene nanocomposite for electrochemical sensing of adenine and guanine. Electrochim Acta 56:4685

    Article  CAS  Google Scholar 

  • Fan Y, Liu JH, Lu HT et al (2011b) Electrochemistry and voltammetric determination of l-tryptophan and l-tyrosine using a glassy carbon electrode modified with a Nafion/TiO2-graphene composite film. Microchim Acta 173:241

    Article  CAS  Google Scholar 

  • Fries D, Haas T, Salchner V et al (2005) Gerinnungsmanagementbeim Polytrauma. Anaesthesist 54:137–154

    Article  CAS  PubMed  Google Scholar 

  • Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Sun M, Lin C et al (2012) Electrochemical DNA biosensor based on graphene and TiO2 nanorods composite film for the detection of transgenic soybean gene sequence of MON89788. Electroanalysis 24:2283–2290

    Article  CAS  Google Scholar 

  • Ge M, Cao C, Huang J et al (2016) A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. J Mater Chem A 4:6772–6801

    Article  CAS  Google Scholar 

  • Grimes CA, Mor GK (2009) TiO2 nanotube arrays. Use of TiO2 nanotube arrays for biological applications. Springer, New York, pp 285–314

    Book  Google Scholar 

  • Heikal T (2016) Fundamentals of analytical toxicology. J Environ Anal Toxicol 6:4

    Google Scholar 

  • Hou Z, Zhang Y, Deng K et al (2015) UV-emitting upconversion-based TiO2 photosensitizing nanoplatform: near-infrared light mediated in vivo photodynamic therapy via mitochondria-involved apoptosis pathway. ACS Nano 9:2584–2599

    Article  CAS  PubMed  Google Scholar 

  • Hunt JA, Shoichet M (1985) Biomaterials: surface interactions. Solid State Mater Sci 5:161–162

    Article  Google Scholar 

  • Imase M, Ohko Y, Takeuchi M et al (2013) Estimating the viability of Chlorella exposed to oxidative stresses based around photocatalysis. Int Biodeterior Biodegrad 78:1–6

    Article  CAS  Google Scholar 

  • Ishikawa K, Miyamoto Y, Yuasa T et al (2002) Fabrication of Zn containing apatite cement and its initial evaluation using human osteoblastic cells. Biomaterials 23:423–428

    Article  CAS  PubMed  Google Scholar 

  • Iwamoto M, Mukundan S, Marzilli LG (1994) DNA adduct formation by platinum anticancer drugs. Insight into an unusual GpGIntrastrand cross-link in a hairpin-like DNA oligonucleotide using NMR and distance geometry methods. J Am Chem Soc 116:6238–6244

    Article  CAS  Google Scholar 

  • Janga HD, Kimab SK, Changa H et al (2012) A glucose biosensor based on TiO2–Graphene composite. Biosens Bioelectron 38:184–188

    Article  CAS  Google Scholar 

  • Jo WK, Won Y, Hwang I et al (2014) Enhanced photocatalytic degradation of aqueous nitrobenzene using graphitic carbon–TiO2 composites. Ind Eng Chem Res 53:3455–3461

    Article  CAS  Google Scholar 

  • Kafi AKM, Chen A (2009) A novel amperometric biosensor for the detection of nitrophenol. Talanta 79:97–102

    Article  CAS  PubMed  Google Scholar 

  • Kim B, Kim D, Cho D et al (2003) Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria. Chemosphere 52:277–281

    Article  CAS  PubMed  Google Scholar 

  • Kim WJ, Kim S, Lee BS et al (2009) Enhanced protein immobilization efficiency on a TiO2 surface modified with a hydroxyl functional group. Langmuir 25:11692–11697

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Khang G, Lee JW et al (1998) Platelet adhesion onto chargeable functional group gradient surfaces. J Biomed Mater Res 40:180–186

    Article  CAS  PubMed  Google Scholar 

  • Lee HU, Lee SC, Choi SH et al (2013) Highly visible-light active nanoporous TiO2 photocatalysts for efficient solar photocatalytic applications. Appl Catal B 129:106–113

    Article  CAS  Google Scholar 

  • Li P, Liu S (2011) A sensitive sensor for anthraquinone anticancer drugs and hsDNA based on CdTe/CdS quantum dots fluorescence reversible control. Coll Surf A 392:7–15

    Article  CAS  Google Scholar 

  • Li GS, Zhang DQ, Yu JC (2009) A new visible-light photocatalyst: CdS quantum dots embedded mesoporous TiO2. Environ Sci Tech 43:7079–7085

    Article  CAS  Google Scholar 

  • Li YJ, Ma MJ, Zhu JJ (2012) Dual-signal amplification strategy for ultrasensitive photoelectrochemical immunosensing of α-fetoprotein. J Anal Chem 84:10492

    Article  CAS  Google Scholar 

  • Liang R, Jiang J, Qiu J (2008) An amperometric glucose biosensor based on titania Sol–gel/Prussian blue composite film. Anal Sci 24:1425

    Article  CAS  PubMed  Google Scholar 

  • Liu JX, Yang DZ, Shi F et al (2003) Sol–gel deposited TiO2 film on NiTi surgical alloy for biocompatibility improvement. Thin Solid Films 429:225–230

    Article  CAS  Google Scholar 

  • Liu YG, Feng P, Xue XY et al (2006) Room-temperature oxygen sensitivity of ZnS nanobelts. Appl Phys Lett 88:102904

    Article  CAS  Google Scholar 

  • Liu G, Zhou L, Wu Y et al (2015) The fabrication of full color P(St-MAA) photonic crystal structure on polyester fabrics by vertical deposition self-assembly. J Appl Polym Sci 132:41750

    Google Scholar 

  • Luo Y, Liu H, Rui Q et al (2009) Detection of extracellular H2O2 released from human liver cancer cells based on TiO2 nanoneedles with enhanced electron transfer of cytochrome c. Anal Chem 81:3035–3041

    Article  CAS  PubMed  Google Scholar 

  • Lyman DJ (1991) Bulk and Surface Effects on Blood Compatibility. J Bioact Compat Polym 6:283–295

    Article  CAS  Google Scholar 

  • Maitz MF, Pham MT, Wieser E et al (2003) Blood compatibility of titanium oxides with various crystal structure and element doping. J Biomater Appl 17:303–319

    Article  CAS  PubMed  Google Scholar 

  • Mani G (2012) Drug release evaluation of mesoporous TiO2: a nano carrier for duloxetine. Computer Applications for Modeling, Simulation, and Automobile. Springer, Berlin, pp 237–243

    Google Scholar 

  • Marchal S, Dolivet G, Lassalle HP et al (2015) Targeted photodynamic therapy in head and neck squamous cell carcinoma: heading into the future. Lasers Med Sci 30:2381–2387. https://doi.org/10.1007/s10103-014-1703-4

    Article  PubMed  Google Scholar 

  • Markowska-Szczupak A, Wang K, Rokicka P et al (2015) The effect of anatase and rutile crystallites isolated from titania P25 photocatalyst on growth of selected mould fungi. J Photochem Photobiol B 151:54–62

    Article  CAS  PubMed  Google Scholar 

  • Mathurab S, Erdemc A, Caveliusa C et al (2009) Amplified electrochemical DNA-sensing of nanostructured metal oxide films deposited on disposable graphite electrodes functionalized by chemical vapor deposition. J Sens Actuators B 136:432

    Article  CAS  Google Scholar 

  • Matsunaga T, Tomoda R, Nakajima T et al (1985) Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol Lett 29:211

    Article  CAS  Google Scholar 

  • Mattle MJ, Thampi KR (2013) Photocatalytic degradation of remazol brilliant blue® by sol–gel derived carbon-doped TiO2. Appl Catal B 140–140:348–355

    Article  CAS  Google Scholar 

  • Mondal K, Ali MA, Agrawal VV et al (2014) Highly sensitive biofunctionalized mesoporous electrospun TiO2 nanofiber based interface for biosensing. ACS Appl Mater Interfaces 6:2516–2527

    Article  CAS  PubMed  Google Scholar 

  • Montazer M, Behzadni A, Pakdel E et al (2011) Photo induced silver on nano titanium dioxide as an enhanced antimicrobial agent for wool. J Photochem Photobiol B 103:207–214

    Article  CAS  PubMed  Google Scholar 

  • Moon KS, Bae JM, Jin S et al (2014) Infrared-mediated drug elution activity of gold nanorod-grafted TiO2 nanotubes. J Nanometer 4:750813

    Google Scholar 

  • Mun KS, Alvarez SD, Choi WY et al (2010) A stable, label-free optical interferometric biosensor based on TiO2 nanotube arrays. ACS Nano 4:2070–2076

    Article  CAS  PubMed  Google Scholar 

  • Nielsen KF, Holm G, Uttrup LP et al (2004) Mould growth on building materials under low water activities. Influence of humidity and temperature on fungal growth and secondary metabolism. Int Biodeterior Biodegrad 54:325–336

    Article  CAS  Google Scholar 

  • Ninomiya K, Ogino C, Oshima S et al (2012) Targeted sonodynamic therapy using protein-modified TiO2 nanoparticles. Ultrason Sonochem 19:607–614

    Article  CAS  PubMed  Google Scholar 

  • Niu LY, Guan YS, Chen YZ et al (2012) BODIPY-based ratiometric fluorescent sensor for highly selective detection of glutathione over cysteine and homocysteine. J Am Chem Soc 134:18928–18931

    Article  CAS  PubMed  Google Scholar 

  • O’Brien JC, Stickney JT, Porter MD (2000) Self-assembled double-stranded DNA (dsDNA) microarrays for protein:dsDNA screening using atomic force microscopy. J Am Chem Soc 122:5004

    Article  CAS  Google Scholar 

  • Oh SH, Finõnes RR, Daraio C et al (2005) Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials 26:4938–4943

    Article  CAS  PubMed  Google Scholar 

  • Oh S, Daraio C, Chen LH et al (2006) Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. J Biomed Mater Res A 78:97–103

    Article  PubMed  CAS  Google Scholar 

  • Olmedo’ DG, Duffó G, Cabrini RL et al (2008) Local effect of titanium implant corrosion: an experimental study in rats. Int J Oral Maxillofacial Surg 37:1032–1038

    Article  Google Scholar 

  • Pan TM, Lin JC (2009) A TiO2/Er2O3 stacked electrolyte/insulator/semiconductor film pH-sensor for the detection of urea. Sens Actuators B 138:474

    Article  CAS  Google Scholar 

  • Pandey RR, Saini KK, Dhayal M (2010) Using nano-arrayed structures in sol–gel derived Mn2+ Doped TiO2 for high sensitivity urea biosensor. J Biosens Bioelectron 1:1–4

    Article  CAS  Google Scholar 

  • Pang X, He D, Luo S et al (2009) An amperometric glucose biosensor fabricated with Pt nanoparticle-decorated carbon nanotubes/TiO2 nanotube arrays composite. Sens Actuators B 137:134–138

    Article  CAS  Google Scholar 

  • Park EK, Lee SB, Lee YM (2005) Preparation and characterization of methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) amphiphilic block copolymericnanospheres for tumor-specific folate-mediated targeting of anticancer drugs. Biomaterials 26:1053–1061

    Article  CAS  PubMed  Google Scholar 

  • Rincón AG, Pulgarin C (2004) Bactericidal action of illuminated TiO2 on pure Escherichia coli and natural bacterial consortia: post-irradiation events in the dark and assessment of the effecttive disinfection time. Appl Catal B 49:99–112

    Article  CAS  Google Scholar 

  • Rios F, Smirnov S (2009) Biochemically Responsive Smart Surface. ACS Appl Mater Interfaces 1:768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizoli SB, Nascimento BJ, Osman F et al (2006) Recombinant activated coagulation factor VII and bleeding trauma patients. J Trauma-Inj Infect Crit Care 61:1419–1425

    Article  CAS  Google Scholar 

  • Roy SC, Paulose M, Grimes CA (2007) The effect of TiO2 nanotubes in the enhancement of blood clotting for the control of hemorrhage. Biomaterials 28:4667–4672

    Article  CAS  PubMed  Google Scholar 

  • Sahar A, Allah F, Quahtany M et al (1988) Surface modification of titanium plate with anodic oxidation and its application in bone growth. J Prosthet Dent 60:75–84

    Article  Google Scholar 

  • Sakata T, Kamahori M, Miyahara Y (2004) Immobilization of oligonucleotide probes on Si3N4 surface and its application to genetic field effect transistor. Mater Sci Eng C 24:827

    Article  CAS  Google Scholar 

  • Samson RA, Flannigan B, Flannigan ME et al (1994) Health implications of fungi in indoor environments. Elsevier Science Ltd., Kidlington

    Google Scholar 

  • Sangari M, Umadevi M, Mayandi J et al (2015) Photocatalytic and antimicrobial activities of fluorine doped TiO2-carbon nano cones and disc composites. Mater Sci Semicond Process 31:543–550

    Article  CAS  Google Scholar 

  • Santucci R, Meuniera O, Ottb M et al (2007) Fungic contamination of residence: 10 years assessment of analyses. Rev Fr Allergol Immunol Clin 47:402–408

    Google Scholar 

  • Scanlon DO, Dunnill CW, Buckeridge J et al (2013) Band alignment of rutile and anatase TiO2. Nature Mater 12:798–801

    Article  CAS  Google Scholar 

  • Scholkmann F, Kleiser S, Metz AJ et al (2014) A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Neuro Image 85:6–27

    PubMed  Google Scholar 

  • Shrestha NK, Macak JM, Schmidt-Stein F et al (2009) Magnetically guided titania nanotubes for site-selective photocatalysis and drug release. Angew Chem Int Ed 48:969–972

    Article  CAS  Google Scholar 

  • Søballe K (1993) Hydroxyapatite ceramic coating for bone implant fixation. Mechanical and histological studies in dogs. Acta Orthop Scand Suppl 255:1–58

    Article  PubMed  Google Scholar 

  • Søballe K, Hansen ES, Brockstedt-Rasmussen H et al (1993) Hydroxyapatite coating converts fibrous tissue to bone around loaded implants. J Bone Joint Surg Br 75:270–278

    Article  PubMed  Google Scholar 

  • Sotelo-Vazquez C, Noor N, Kafizas A et al (2015) Multifunctional P-doped TiO2 Films: a new approach to self-cleaning, transparent conducting oxide materials. Chem Mater 27:3234–3242

    Article  CAS  Google Scholar 

  • Souza JS, Krambrock K, Pinheiro MVB et al (2014) Visible-light photocatalytic activity of NH4NO3 ion-exchanged nitrogen-doped titanate and TiO2 nanotubes. J Mol Catal A 394:48–56

    Article  CAS  Google Scholar 

  • Spengler JD, Chen Q (2000) Indoor air quality factors in designing a healthy building. Annu Rev Energy Environ 25:567–601

    Article  Google Scholar 

  • Spijker HT, Bos R, Busscher HJ et al (2002) Platelet adhesion and activation on a shielded plasma gradient prepared on polyethylene. Biomaterials 23:757–766

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Ali MA, Solanki PR et al (2013) Mediator-free microfluidics biosensor based on titania–zirconiananocomposite for urea detection. RSC Adv 3:228

    Article  CAS  Google Scholar 

  • Suh JY, Jang BC, Zhu X et al (2003) Effect of hydrothermally treated anodic oxide films on osteoblast attachment and proliferation. Biomaterials 24:347

    Article  CAS  PubMed  Google Scholar 

  • Sunny MC, Sharma CP (1991) Titanium-protein interaction: changes with oxide layer thickness. J Biomater Appl 5:89–98

    Article  Google Scholar 

  • Suzuki N, Sanada T, Terashima C et al (2017) Systematic studies of TiO2-based photocatalysts anti-algal effects on Chlorella vulgaris. J Appl Electrochem 47:197–203

    Article  CAS  Google Scholar 

  • Synatschke CV, Nomoto T, Cabral H et al (2014) Multicompartment micelles with adjustable poly(ethylene glycol) shell for efficient in vivo photodynamic therapy. ACS Nano 8:1161–1172

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Yan F, Tai Q et al (2010) The improvement of glucose bioelectrocatalytic properties of platinum electrodes modified with electrospun TiO2 nanofibers. Biosen. Bioelectron 25:1646–1651

    Article  CAS  Google Scholar 

  • Tang J, Kong B, Wang Y et al (2013) Photoelectrochemical detection of glutathione by IrO2–hemin–TiO2 nanowire arrays. Nano Lett 13:5350–5354

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Wang Y, Li J et al (2014) Sensitive enzymatic glucose detection by TiO2 nanowire photoelectrochemical biosensors. J Mater Chem A 2:6153–6157

    Article  CAS  Google Scholar 

  • Tereshchenko A, Viter R, Smyntyna V et al (2015) Euro Nano Forum, 2015, Conference paper

  • Thor A, Rasmusson L, Wennerberg A et al (2007) The role of whole blood in thrombin generation in contact with various titanium surfaces. Biomaterials 28:966–974

    Article  CAS  PubMed  Google Scholar 

  • Tokuoka Y, Yamada M, Kawashima N et al (2006) Anticancer effect of dye-sensitized TiO2 nanocrystals by polychromatic visible light irradiation. Chem Lett 35:496–497

    Article  CAS  Google Scholar 

  • Topoglidis E, Cass AEG, Gilardi G et al (1998) Protein adsorption on nanocrystalline TiO2 films: an immobilization strategy for bioanalytical devices. Anal Chem 70:5111

    Article  CAS  PubMed  Google Scholar 

  • Townley HE, Kim J, Dobson PJ (2012) In vivo demonstration of enhanced radiotherapy using rare earth doped titania nanoparticles. Nanoscale 4:5043–5050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu W, Dong Y, Lei J et al (2010) Low-potential photoelectrochemical biosensing using porphyrin-functionalized TiO2 nanoparticles. Anal Chem 82:8711

    Article  CAS  PubMed  Google Scholar 

  • Vatansever F, Melo WC, Avci P et al (2013) Antimicrobial strategies centered around reactive oxygen species—bactericidal antibiotics, photodynamic therapy and beyond. FEMS Microbiol Rev 37:955–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verdier T, Coutand M, Bertron A et al (2014) Antibacterial activity of TiO2 photocatalyst alone or in coatings on E. coli: the influence of methodological aspects. Coatings 4:670–686

    Article  CAS  Google Scholar 

  • Vienken J, Diamantoglou M, Hahn C et al (1995) Considerations on developmental aspects of biocompatible dialysis membranes. Artif Organs 19:398–406

    Article  CAS  PubMed  Google Scholar 

  • Viter R, Tereshchenko A, Smyntyna V et al (2017) Toward development of optical biosensors based on photoluminescence of TiO2 nanoparticles for the detection of Salmonella. Sens Actuators B 252:95–102

    Article  CAS  Google Scholar 

  • Vitera R, Smyntyna V, Starodub N et al (2012) Novel immune TiO2 photoluminescence biosensors for leucosis detection. Proc Eng 47:338–341

    Article  CAS  Google Scholar 

  • Wang Y, Lu J, Tang L et al (2009) Graphene oxide amplified electrogenerated chemiluminescence of quantum dots and its selective sensing for glutathione from thiol-containing compounds. J Anal Chem 81:9710–9715

    Article  CAS  Google Scholar 

  • Wang Q, Xu S, Shen F (2011) Preparation and characterization of TiO2 photocatalysts co-doped with iron(III) and lanthanum for the degradation of organic pollutants. Appl Surf Sci 257:7671–7677

    Article  CAS  Google Scholar 

  • Wang B, Sun J, Qian S et al (2012) Proliferation and differentiation of osteoblastic cells on silicon-doped TiO2 film deposited by cathodic arc. Biomed Pharmacother 66:633–641

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Xu G, Zhang X et al (2015) Electrochemical performance and biosensor application of TiO2 nanotube arrays with mesoporous structures constructed by chemical etching. Dalton Trans 44:7662–7672

    Article  CAS  PubMed  Google Scholar 

  • Wanga Y, Wua Y, Yangb H et al (2016) Co-doping TiO2 with boron and/or yttrium elements: effects on antimicrobial activity. Mater Sci Eng B 211:149–155

    Article  CAS  Google Scholar 

  • Webster TJ, Ejiofor JU (2004) Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials 25:4731–4739

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Li L, Qu Y et al (2009) A novel biosensor based on photoelectro-synergistic catalysis for flow-injection analysis system/amperometric detection of organophosphorous pesticides. Anal Chim Acta 643:13

    Article  CAS  PubMed  Google Scholar 

  • Williamson IJ, Martin CJ, McGill G et al (1997) Damp housing and asthma: a case–control study. Thorax 52:229–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wirz S, Knuefermann P, Baumgarten G et al (2003) Head trauma and blood coagulation disorders. AnaesthaseolIntensiv 44:478–490

    Google Scholar 

  • Wu X, Huang YY, Kushida Y et al (2016) Broad-spectrum antimicrobial photocatalysis mediated by titanium dioxide and UVA is potentiated by addition of bromide ion via formation of hypobromite. Free Radical Bio Med 95:74–81

    Article  CAS  Google Scholar 

  • Xie Y, Zhou L, Huang H (2007) Bioelectrocatalytic application of titania nanotube array for molecule detection. Biosens Bioelectron 22:2812–2818

    Article  CAS  PubMed  Google Scholar 

  • Yan YJ, Zheng MZ, Chen ZL et al (2010) Studies on preparation and photodynamic mechanism of chlorin P6-13,15-N-(cyclohexyl)cycloimide (Chlorin-H) and its antitumor effect for photodynamic therapy in vitro and in vivo. Bioorg Med Chem 18:6282–6291

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Li D, Fu J et al (2016) TiO2–CuCNFs based laccase biosensor for enhanced electrocatalysis in hydroquinone detection. J Electroanal Chem 766:16–23

    Article  CAS  Google Scholar 

  • Yao H, Shum AJ, Cowan M et al (2011) A contact lens with embedded sensor for monitoring tear glucose level. Biosens Bioelectron 26:3290

    Article  CAS  PubMed  Google Scholar 

  • Yin M, Ju E, Chen Z et al (2014) Upconverting nanoparticles with a mesoporous TiO2 shell for near-infrared-triggered drug delivery and synergistic targeted cancer therapy. Chem Eur J 20:14012–14017

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Liu S, Ju H (2003) Glucose sensor for flow injection analysis of serum glucose based on immobilization of glucose oxidase in titania sol–gel membrane. Biosens Bioelectron 19:401–409

    Article  CAS  PubMed  Google Scholar 

  • Yu S, Yun HJ, Kim YH et al (2014) Carbon-doped TiO2 nanoparticles wrapped with nanographene as a high performance photocatalyst for phenol degradation under visible light irradiation. Appl Catal B 144:893–899

    Article  CAS  Google Scholar 

  • Zang J, Li CM, Cui X et al (2007) Tailoring zinc oxide nanowires for high performance amperometric glucose sensor. Electroanalysis 19:1008

    Article  CAS  Google Scholar 

  • Zhang Z, Sun J, Hu H et al (2011) Osteoblast-like cell adhesion on porous silicon-incorporated TiO2 coating prepared by micro-arc oxidation. J Biomed Mater Res B 97:224–234

    Article  CAS  Google Scholar 

  • Zhang Y, Jiang Z, Huang J et al (2015) Titanate and titaniananostructured materials for environmental and energy applications: a review. RSC Adv 5:79479–79795

    Article  CAS  Google Scholar 

  • Zhao H, Dong Y, Jiang P et al (2015) Highly dispersed CeO2 on TiO2 nanotube: a synergistic nanocomposite with superior peroxidase-like activity. ACS Appl Mater Interfaces 7:6451–6461

    Article  CAS  PubMed  Google Scholar 

  • Zheng R, Lin L, Xie J et al (2008) State of doped phosphorus and its influence on the physicochemical and photocatalytic properties of P-doped titania. J Phys Chem C 112:15502–15509

    Article  CAS  Google Scholar 

  • Zhu J, Liu X, Wang X et al (2015) Preparation of polyaniline–TiO2 nanotube composite for the development of electrochemical biosensors. Sens Actuators B 1:450–457

    Article  CAS  Google Scholar 

  • Zhuo Y, Chai YQ, Yuan R et al (2011) Glucose oxidase and ferrocene labels immobilized at Au/TiO2 nanocomposites with high load amount and activity for sensitive immune electrochemical measurement of ProGRP biomarker. Biosens Bioelectron 26:3838–3844

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Chauhan, N.S., Mittal, A. et al. TiO2 and its composites as promising biomaterials: a review. Biometals 31, 147–159 (2018). https://doi.org/10.1007/s10534-018-0078-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-018-0078-6

Keywords

Navigation