Advertisement

BioMetals

, Volume 31, Issue 2, pp 147–159 | Cite as

TiO2 and its composites as promising biomaterials: a review

  • Naveen Kumar
  • Nar Singh Chauhan
  • Anuj Mittal
  • Shankar Sharma
Article

Abstract

TiO2 is a well-known material and has remarkable physical, chemical and biocompatible properties which have made it a suitable material in the biological world. The development of new TiO2-based materials is strongly required to achieve desired properties and applications. A large number of TiO2 composites have been synthesized and applied in various fields. The present review reports the utility of TiO2 and its composites in biosensing, in Photodynamic Therapy, as an antimicrobial agent and as a nanodrug carrier. The aim of this review is to discuss the biological application of the TiO2 based materials and some recent advancement in TiO2 to enhance its application in the biological world.

Keywords

Biocompatibility Composites Biosensing Antimicrobial Nanodrug carrier 

References

  1. Albrektsson T, Brånemark PI, Hansson HA et al (1981) Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 52:155–170PubMedCrossRefGoogle Scholar
  2. Ansari AA, Sumana G, Pandey MK et al (2009) Sol–gel derived titanium oxide–cerium oxide biocompatible nanocomposite film for urea sensor. J Mater Res 24:1667–1673CrossRefGoogle Scholar
  3. Ashkarran AA, Hamidinezhad H, Haddadic H et al (2014) Double-doped TiO2 nanoparticles as an efficient visible-light-active photocatalyst and antibacterial agent under solar simulated light. Appl Surf Sci 301:338–345CrossRefGoogle Scholar
  4. Aw MS, Losic D (2013) Ultrasound enhanced release of therapeutics from drug-releasing implants based on titaniananotube arrays. Int J Pharm 443:154–162PubMedCrossRefGoogle Scholar
  5. Aw MS, Addai-Mensah J, Losic D (2012) Magnetic-responsive delivery of drug-carriers using titania nanotube arrays. J Mater Chem 22:6561–6563CrossRefGoogle Scholar
  6. Aw MS, Kurian M, Losic D (2014) Non-eroding drug-releasing implants with ordered nanoporous and nanotubular structures: concepts for controlling drug release. Biomater Sci 2:10–34CrossRefGoogle Scholar
  7. Aysin B, Ozturk A, Par J (2013) Silver-loaded TiO2 powders prepared through mechanical ball milling. Ceram Int 39:7119–7126CrossRefGoogle Scholar
  8. Bae IH, Yun KD, Kim HS et al (2010) Anodic oxidized nanotubular titanium implants enhance bone morphogenetic protein-2 delivery. J Biomed Mater Res B 93:484–491CrossRefGoogle Scholar
  9. Baifu X, Zhiyu R, Haiyuan H et al (2005) Photocatalytic activity and interfacial carrier transfer of Ag–TiO2 nanoparticle films. Appl Surf Sci 252:2050–2055CrossRefGoogle Scholar
  10. Benvenuto P, Kafi AKM, Chen A (2009) High performance glucose biosensor based on the immobilization of glucose oxidase onto modified titania nanotube arrays. J Electroanal Chem 627:76–81CrossRefGoogle Scholar
  11. Bjursten LM, Rasmusson L, Oh S et al (2010) Titanium dioxide nanotubes enhance bone bonding in vivo. J Biomed Mater Res A 92:1218–1224PubMedGoogle Scholar
  12. Cai K, Jiang F, Luo Z et al (2010) Temperature-responsive controlled drug delivery system based on titanium nanotubes. Adv Eng Mater 12:B565–B570CrossRefGoogle Scholar
  13. Camire CL, Saint-Jean SJ, Mochales C et al (2005) Material characterization and in vivo behavior of silicon substituted α-tricalcium phosphate cement. J Biomed Mater Res B 76:424–431Google Scholar
  14. Carr ME, Krischnaswami A, Martin E (2007) Method of using platelet contractile force and whole blood clot elastic modulus as clinical markers. US patent no 7:192,726Google Scholar
  15. Chen X, Yang Z, Si S (2009) Potentiometric urea biosensor based on immobilization of urease onto molecularly imprinted TiO2 film. J Electroanal Chem 635:1CrossRefGoogle Scholar
  16. Chen R, Wang X, Yao X et al (2013) Near-IR-triggered photothermal/photodynamic dual-modality therapy system via chitosan hybrid nanospheres. Biomaterials 34:8314–8322PubMedCrossRefGoogle Scholar
  17. Cheng Y, Meyers JD, Broome AM et al (2011) Deep penetration of a PDT drug into tumors by noncovalent drug-gold nanoparticle conjugates. J Am Chem Soc 133:2583–2591PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chenga C, Sunb Y (2012) Carbon doped TiO2 nanowire arrays with improved photoelectrochemical water splitting performance. Appl Surf Sci 263:273–276CrossRefGoogle Scholar
  19. Cooley JD, Wong WC, Jumper CA et al (1998) Correlation between the prevalence of certain fungi and sick building syndrome. Occup Environ Med 55:579–584PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cordero-García A, Guzmán-Mar JL, Hinojosa-Reyes L et al (2016) Effect of carbon doping on WO3/TiO2 coupled oxide and its photocatalytic activity on diclofenac degradation. Ceram Int 42:9796–9803CrossRefGoogle Scholar
  21. Cui J, Chen S, Liu H et al (2014) Nano-p–n junction heterostructures enhanced TiO2 nanobelts biosensing electrode. J Solid State Electrochem 18:2693–2699CrossRefGoogle Scholar
  22. Deng R, Xie X, Vendrell M et al (2011) Intracellular glutathione detection using MnO2-nanosheet-modified upconversion nanoparticles. J Am Chem Soc 133:20168–20171PubMedCrossRefGoogle Scholar
  23. Dette C, Pérez-Osorio MA, Kley CS et al (2014) TiO2 anatase with a bandgap in the visible region. Nano Lett 14:6533–6538PubMedCrossRefGoogle Scholar
  24. Dillon HK, Miller JD, Sorenson WG et al (1999) Review of methods applicable to the assessment of mold exposure to children. Environ Health Perspect 107:473–480PubMedPubMedCentralCrossRefGoogle Scholar
  25. Dreaden EC, Austin LA, Mackey MA et al (2012) Size matters: gold nanoparticles in targeted cancer drug delivery. Ther Deliv 3:457–478PubMedPubMedCentralCrossRefGoogle Scholar
  26. Durocher S, Rezaee A, Hamm C et al (2009) Disulfide-linked, gold nanoparticle based reagent for detecting small molecular weight thiols. J Am Chem Soc 131:2475–2477PubMedCrossRefGoogle Scholar
  27. Ercan B, Taylor E, Alpaslan E et al (2011) Diameter of titanium nanotubes influences anti-bacterial efficacy. Nanotechnology 22:295102–295112PubMedCrossRefGoogle Scholar
  28. Fan Y, Huang KJ, Niu DJ et al (2011a) TiO2-graphene nanocomposite for electrochemical sensing of adenine and guanine. Electrochim Acta 56:4685CrossRefGoogle Scholar
  29. Fan Y, Liu JH, Lu HT et al (2011b) Electrochemistry and voltammetric determination of l-tryptophan and l-tyrosine using a glassy carbon electrode modified with a Nafion/TiO2-graphene composite film. Microchim Acta 173:241CrossRefGoogle Scholar
  30. Fries D, Haas T, Salchner V et al (2005) Gerinnungsmanagementbeim Polytrauma. Anaesthesist 54:137–154PubMedCrossRefGoogle Scholar
  31. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38PubMedCrossRefGoogle Scholar
  32. Gao H, Sun M, Lin C et al (2012) Electrochemical DNA biosensor based on graphene and TiO2 nanorods composite film for the detection of transgenic soybean gene sequence of MON89788. Electroanalysis 24:2283–2290CrossRefGoogle Scholar
  33. Ge M, Cao C, Huang J et al (2016) A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. J Mater Chem A 4:6772–6801CrossRefGoogle Scholar
  34. Grimes CA, Mor GK (2009) TiO2 nanotube arrays. Use of TiO2 nanotube arrays for biological applications. Springer, New York, pp 285–314CrossRefGoogle Scholar
  35. Heikal T (2016) Fundamentals of analytical toxicology. J Environ Anal Toxicol 6:4Google Scholar
  36. Hou Z, Zhang Y, Deng K et al (2015) UV-emitting upconversion-based TiO2 photosensitizing nanoplatform: near-infrared light mediated in vivo photodynamic therapy via mitochondria-involved apoptosis pathway. ACS Nano 9:2584–2599PubMedCrossRefGoogle Scholar
  37. Hunt JA, Shoichet M (1985) Biomaterials: surface interactions. Solid State Mater Sci 5:161–162CrossRefGoogle Scholar
  38. Imase M, Ohko Y, Takeuchi M et al (2013) Estimating the viability of Chlorella exposed to oxidative stresses based around photocatalysis. Int Biodeterior Biodegrad 78:1–6CrossRefGoogle Scholar
  39. Ishikawa K, Miyamoto Y, Yuasa T et al (2002) Fabrication of Zn containing apatite cement and its initial evaluation using human osteoblastic cells. Biomaterials 23:423–428PubMedCrossRefGoogle Scholar
  40. Iwamoto M, Mukundan S, Marzilli LG (1994) DNA adduct formation by platinum anticancer drugs. Insight into an unusual GpGIntrastrand cross-link in a hairpin-like DNA oligonucleotide using NMR and distance geometry methods. J Am Chem Soc 116:6238–6244CrossRefGoogle Scholar
  41. Janga HD, Kimab SK, Changa H et al (2012) A glucose biosensor based on TiO2–Graphene composite. Biosens Bioelectron 38:184–188CrossRefGoogle Scholar
  42. Jo WK, Won Y, Hwang I et al (2014) Enhanced photocatalytic degradation of aqueous nitrobenzene using graphitic carbon–TiO2 composites. Ind Eng Chem Res 53:3455–3461CrossRefGoogle Scholar
  43. Kafi AKM, Chen A (2009) A novel amperometric biosensor for the detection of nitrophenol. Talanta 79:97–102PubMedCrossRefGoogle Scholar
  44. Kim B, Kim D, Cho D et al (2003) Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria. Chemosphere 52:277–281PubMedCrossRefGoogle Scholar
  45. Kim WJ, Kim S, Lee BS et al (2009) Enhanced protein immobilization efficiency on a TiO2 surface modified with a hydroxyl functional group. Langmuir 25:11692–11697PubMedCrossRefGoogle Scholar
  46. Lee JH, Khang G, Lee JW et al (1998) Platelet adhesion onto chargeable functional group gradient surfaces. J Biomed Mater Res 40:180–186PubMedCrossRefGoogle Scholar
  47. Lee HU, Lee SC, Choi SH et al (2013) Highly visible-light active nanoporous TiO2 photocatalysts for efficient solar photocatalytic applications. Appl Catal B 129:106–113CrossRefGoogle Scholar
  48. Li P, Liu S (2011) A sensitive sensor for anthraquinone anticancer drugs and hsDNA based on CdTe/CdS quantum dots fluorescence reversible control. Coll Surf A 392:7–15CrossRefGoogle Scholar
  49. Li GS, Zhang DQ, Yu JC (2009) A new visible-light photocatalyst: CdS quantum dots embedded mesoporous TiO2. Environ Sci Tech 43:7079–7085CrossRefGoogle Scholar
  50. Li YJ, Ma MJ, Zhu JJ (2012) Dual-signal amplification strategy for ultrasensitive photoelectrochemical immunosensing of α-fetoprotein. J Anal Chem 84:10492CrossRefGoogle Scholar
  51. Liang R, Jiang J, Qiu J (2008) An amperometric glucose biosensor based on titania Sol–gel/Prussian blue composite film. Anal Sci 24:1425PubMedCrossRefGoogle Scholar
  52. Liu JX, Yang DZ, Shi F et al (2003) Sol–gel deposited TiO2 film on NiTi surgical alloy for biocompatibility improvement. Thin Solid Films 429:225–230CrossRefGoogle Scholar
  53. Liu YG, Feng P, Xue XY et al (2006) Room-temperature oxygen sensitivity of ZnS nanobelts. Appl Phys Lett 88:102904CrossRefGoogle Scholar
  54. Liu G, Zhou L, Wu Y et al (2015) The fabrication of full color P(St-MAA) photonic crystal structure on polyester fabrics by vertical deposition self-assembly. J Appl Polym Sci 132:41750Google Scholar
  55. Luo Y, Liu H, Rui Q et al (2009) Detection of extracellular H2O2 released from human liver cancer cells based on TiO2 nanoneedles with enhanced electron transfer of cytochrome c. Anal Chem 81:3035–3041PubMedCrossRefGoogle Scholar
  56. Lyman DJ (1991) Bulk and Surface Effects on Blood Compatibility. J Bioact Compat Polym 6:283–295CrossRefGoogle Scholar
  57. Maitz MF, Pham MT, Wieser E et al (2003) Blood compatibility of titanium oxides with various crystal structure and element doping. J Biomater Appl 17:303–319PubMedCrossRefGoogle Scholar
  58. Mani G (2012) Drug release evaluation of mesoporous TiO2: a nano carrier for duloxetine. Computer Applications for Modeling, Simulation, and Automobile. Springer, Berlin, pp 237–243Google Scholar
  59. Marchal S, Dolivet G, Lassalle HP et al (2015) Targeted photodynamic therapy in head and neck squamous cell carcinoma: heading into the future. Lasers Med Sci 30:2381–2387.  https://doi.org/10.1007/s10103-014-1703-4 PubMedCrossRefGoogle Scholar
  60. Markowska-Szczupak A, Wang K, Rokicka P et al (2015) The effect of anatase and rutile crystallites isolated from titania P25 photocatalyst on growth of selected mould fungi. J Photochem Photobiol B 151:54–62PubMedCrossRefGoogle Scholar
  61. Mathurab S, Erdemc A, Caveliusa C et al (2009) Amplified electrochemical DNA-sensing of nanostructured metal oxide films deposited on disposable graphite electrodes functionalized by chemical vapor deposition. J Sens Actuators B 136:432CrossRefGoogle Scholar
  62. Matsunaga T, Tomoda R, Nakajima T et al (1985) Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol Lett 29:211CrossRefGoogle Scholar
  63. Mattle MJ, Thampi KR (2013) Photocatalytic degradation of remazol brilliant blue® by sol–gel derived carbon-doped TiO2. Appl Catal B 140–140:348–355CrossRefGoogle Scholar
  64. Mondal K, Ali MA, Agrawal VV et al (2014) Highly sensitive biofunctionalized mesoporous electrospun TiO2 nanofiber based interface for biosensing. ACS Appl Mater Interfaces 6:2516–2527PubMedCrossRefGoogle Scholar
  65. Montazer M, Behzadni A, Pakdel E et al (2011) Photo induced silver on nano titanium dioxide as an enhanced antimicrobial agent for wool. J Photochem Photobiol B 103:207–214PubMedCrossRefGoogle Scholar
  66. Moon KS, Bae JM, Jin S et al (2014) Infrared-mediated drug elution activity of gold nanorod-grafted TiO2 nanotubes. J Nanometer 4:750813Google Scholar
  67. Mun KS, Alvarez SD, Choi WY et al (2010) A stable, label-free optical interferometric biosensor based on TiO2 nanotube arrays. ACS Nano 4:2070–2076PubMedCrossRefGoogle Scholar
  68. Nielsen KF, Holm G, Uttrup LP et al (2004) Mould growth on building materials under low water activities. Influence of humidity and temperature on fungal growth and secondary metabolism. Int Biodeterior Biodegrad 54:325–336CrossRefGoogle Scholar
  69. Ninomiya K, Ogino C, Oshima S et al (2012) Targeted sonodynamic therapy using protein-modified TiO2 nanoparticles. Ultrason Sonochem 19:607–614PubMedCrossRefGoogle Scholar
  70. Niu LY, Guan YS, Chen YZ et al (2012) BODIPY-based ratiometric fluorescent sensor for highly selective detection of glutathione over cysteine and homocysteine. J Am Chem Soc 134:18928–18931PubMedCrossRefGoogle Scholar
  71. O’Brien JC, Stickney JT, Porter MD (2000) Self-assembled double-stranded DNA (dsDNA) microarrays for protein:dsDNA screening using atomic force microscopy. J Am Chem Soc 122:5004CrossRefGoogle Scholar
  72. Oh SH, Finõnes RR, Daraio C et al (2005) Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials 26:4938–4943PubMedCrossRefGoogle Scholar
  73. Oh S, Daraio C, Chen LH et al (2006) Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. J Biomed Mater Res A 78:97–103PubMedCrossRefGoogle Scholar
  74. Olmedo’ DG, Duffó G, Cabrini RL et al (2008) Local effect of titanium implant corrosion: an experimental study in rats. Int J Oral Maxillofacial Surg 37:1032–1038CrossRefGoogle Scholar
  75. Pan TM, Lin JC (2009) A TiO2/Er2O3 stacked electrolyte/insulator/semiconductor film pH-sensor for the detection of urea. Sens Actuators B 138:474CrossRefGoogle Scholar
  76. Pandey RR, Saini KK, Dhayal M (2010) Using nano-arrayed structures in sol–gel derived Mn2+ Doped TiO2 for high sensitivity urea biosensor. J Biosens Bioelectron 1:1–4CrossRefGoogle Scholar
  77. Pang X, He D, Luo S et al (2009) An amperometric glucose biosensor fabricated with Pt nanoparticle-decorated carbon nanotubes/TiO2 nanotube arrays composite. Sens Actuators B 137:134–138CrossRefGoogle Scholar
  78. Park EK, Lee SB, Lee YM (2005) Preparation and characterization of methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) amphiphilic block copolymericnanospheres for tumor-specific folate-mediated targeting of anticancer drugs. Biomaterials 26:1053–1061PubMedCrossRefGoogle Scholar
  79. Rincón AG, Pulgarin C (2004) Bactericidal action of illuminated TiO2 on pure Escherichia coli and natural bacterial consortia: post-irradiation events in the dark and assessment of the effecttive disinfection time. Appl Catal B 49:99–112CrossRefGoogle Scholar
  80. Rios F, Smirnov S (2009) Biochemically Responsive Smart Surface. ACS Appl Mater Interfaces 1:768PubMedPubMedCentralCrossRefGoogle Scholar
  81. Rizoli SB, Nascimento BJ, Osman F et al (2006) Recombinant activated coagulation factor VII and bleeding trauma patients. J Trauma-Inj Infect Crit Care 61:1419–1425CrossRefGoogle Scholar
  82. Roy SC, Paulose M, Grimes CA (2007) The effect of TiO2 nanotubes in the enhancement of blood clotting for the control of hemorrhage. Biomaterials 28:4667–4672PubMedCrossRefGoogle Scholar
  83. Sahar A, Allah F, Quahtany M et al (1988) Surface modification of titanium plate with anodic oxidation and its application in bone growth. J Prosthet Dent 60:75–84CrossRefGoogle Scholar
  84. Sakata T, Kamahori M, Miyahara Y (2004) Immobilization of oligonucleotide probes on Si3N4 surface and its application to genetic field effect transistor. Mater Sci Eng C 24:827CrossRefGoogle Scholar
  85. Samson RA, Flannigan B, Flannigan ME et al (1994) Health implications of fungi in indoor environments. Elsevier Science Ltd., KidlingtonGoogle Scholar
  86. Sangari M, Umadevi M, Mayandi J et al (2015) Photocatalytic and antimicrobial activities of fluorine doped TiO2-carbon nano cones and disc composites. Mater Sci Semicond Process 31:543–550CrossRefGoogle Scholar
  87. Santucci R, Meuniera O, Ottb M et al (2007) Fungic contamination of residence: 10 years assessment of analyses. Rev Fr Allergol Immunol Clin 47:402–408Google Scholar
  88. Scanlon DO, Dunnill CW, Buckeridge J et al (2013) Band alignment of rutile and anatase TiO2. Nature Mater 12:798–801CrossRefGoogle Scholar
  89. Scholkmann F, Kleiser S, Metz AJ et al (2014) A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Neuro Image 85:6–27PubMedGoogle Scholar
  90. Shrestha NK, Macak JM, Schmidt-Stein F et al (2009) Magnetically guided titania nanotubes for site-selective photocatalysis and drug release. Angew Chem Int Ed 48:969–972CrossRefGoogle Scholar
  91. Søballe K (1993) Hydroxyapatite ceramic coating for bone implant fixation. Mechanical and histological studies in dogs. Acta Orthop Scand Suppl 255:1–58PubMedCrossRefGoogle Scholar
  92. Søballe K, Hansen ES, Brockstedt-Rasmussen H et al (1993) Hydroxyapatite coating converts fibrous tissue to bone around loaded implants. J Bone Joint Surg Br 75:270–278PubMedCrossRefGoogle Scholar
  93. Sotelo-Vazquez C, Noor N, Kafizas A et al (2015) Multifunctional P-doped TiO2 Films: a new approach to self-cleaning, transparent conducting oxide materials. Chem Mater 27:3234–3242CrossRefGoogle Scholar
  94. Souza JS, Krambrock K, Pinheiro MVB et al (2014) Visible-light photocatalytic activity of NH4NO3 ion-exchanged nitrogen-doped titanate and TiO2 nanotubes. J Mol Catal A 394:48–56CrossRefGoogle Scholar
  95. Spengler JD, Chen Q (2000) Indoor air quality factors in designing a healthy building. Annu Rev Energy Environ 25:567–601CrossRefGoogle Scholar
  96. Spijker HT, Bos R, Busscher HJ et al (2002) Platelet adhesion and activation on a shielded plasma gradient prepared on polyethylene. Biomaterials 23:757–766PubMedCrossRefGoogle Scholar
  97. Srivastava S, Ali MA, Solanki PR et al (2013) Mediator-free microfluidics biosensor based on titania–zirconiananocomposite for urea detection. RSC Adv 3:228CrossRefGoogle Scholar
  98. Suh JY, Jang BC, Zhu X et al (2003) Effect of hydrothermally treated anodic oxide films on osteoblast attachment and proliferation. Biomaterials 24:347PubMedCrossRefGoogle Scholar
  99. Sunny MC, Sharma CP (1991) Titanium-protein interaction: changes with oxide layer thickness. J Biomater Appl 5:89–98CrossRefGoogle Scholar
  100. Suzuki N, Sanada T, Terashima C et al (2017) Systematic studies of TiO2-based photocatalysts anti-algal effects on Chlorella vulgaris. J Appl Electrochem 47:197–203CrossRefGoogle Scholar
  101. Synatschke CV, Nomoto T, Cabral H et al (2014) Multicompartment micelles with adjustable poly(ethylene glycol) shell for efficient in vivo photodynamic therapy. ACS Nano 8:1161–1172PubMedCrossRefGoogle Scholar
  102. Tang H, Yan F, Tai Q et al (2010) The improvement of glucose bioelectrocatalytic properties of platinum electrodes modified with electrospun TiO2 nanofibers. Biosen. Bioelectron 25:1646–1651CrossRefGoogle Scholar
  103. Tang J, Kong B, Wang Y et al (2013) Photoelectrochemical detection of glutathione by IrO2–hemin–TiO2 nanowire arrays. Nano Lett 13:5350–5354PubMedCrossRefGoogle Scholar
  104. Tang J, Wang Y, Li J et al (2014) Sensitive enzymatic glucose detection by TiO2 nanowire photoelectrochemical biosensors. J Mater Chem A 2:6153–6157CrossRefGoogle Scholar
  105. Tereshchenko A, Viter R, Smyntyna V et al (2015) Euro Nano Forum, 2015, Conference paperGoogle Scholar
  106. Thor A, Rasmusson L, Wennerberg A et al (2007) The role of whole blood in thrombin generation in contact with various titanium surfaces. Biomaterials 28:966–974PubMedCrossRefGoogle Scholar
  107. Tokuoka Y, Yamada M, Kawashima N et al (2006) Anticancer effect of dye-sensitized TiO2 nanocrystals by polychromatic visible light irradiation. Chem Lett 35:496–497CrossRefGoogle Scholar
  108. Topoglidis E, Cass AEG, Gilardi G et al (1998) Protein adsorption on nanocrystalline TiO2 films: an immobilization strategy for bioanalytical devices. Anal Chem 70:5111PubMedCrossRefGoogle Scholar
  109. Townley HE, Kim J, Dobson PJ (2012) In vivo demonstration of enhanced radiotherapy using rare earth doped titania nanoparticles. Nanoscale 4:5043–5050PubMedPubMedCentralCrossRefGoogle Scholar
  110. Tu W, Dong Y, Lei J et al (2010) Low-potential photoelectrochemical biosensing using porphyrin-functionalized TiO2 nanoparticles. Anal Chem 82:8711PubMedCrossRefGoogle Scholar
  111. Vatansever F, Melo WC, Avci P et al (2013) Antimicrobial strategies centered around reactive oxygen species—bactericidal antibiotics, photodynamic therapy and beyond. FEMS Microbiol Rev 37:955–989PubMedPubMedCentralCrossRefGoogle Scholar
  112. Verdier T, Coutand M, Bertron A et al (2014) Antibacterial activity of TiO2 photocatalyst alone or in coatings on E. coli: the influence of methodological aspects. Coatings 4:670–686CrossRefGoogle Scholar
  113. Vienken J, Diamantoglou M, Hahn C et al (1995) Considerations on developmental aspects of biocompatible dialysis membranes. Artif Organs 19:398–406PubMedCrossRefGoogle Scholar
  114. Viter R, Tereshchenko A, Smyntyna V et al (2017) Toward development of optical biosensors based on photoluminescence of TiO2 nanoparticles for the detection of Salmonella. Sens Actuators B 252:95–102CrossRefGoogle Scholar
  115. Vitera R, Smyntyna V, Starodub N et al (2012) Novel immune TiO2 photoluminescence biosensors for leucosis detection. Proc Eng 47:338–341CrossRefGoogle Scholar
  116. Wang Y, Lu J, Tang L et al (2009) Graphene oxide amplified electrogenerated chemiluminescence of quantum dots and its selective sensing for glutathione from thiol-containing compounds. J Anal Chem 81:9710–9715CrossRefGoogle Scholar
  117. Wang Q, Xu S, Shen F (2011) Preparation and characterization of TiO2 photocatalysts co-doped with iron(III) and lanthanum for the degradation of organic pollutants. Appl Surf Sci 257:7671–7677CrossRefGoogle Scholar
  118. Wang B, Sun J, Qian S et al (2012) Proliferation and differentiation of osteoblastic cells on silicon-doped TiO2 film deposited by cathodic arc. Biomed Pharmacother 66:633–641PubMedCrossRefGoogle Scholar
  119. Wang J, Xu G, Zhang X et al (2015) Electrochemical performance and biosensor application of TiO2 nanotube arrays with mesoporous structures constructed by chemical etching. Dalton Trans 44:7662–7672PubMedCrossRefGoogle Scholar
  120. Wanga Y, Wua Y, Yangb H et al (2016) Co-doping TiO2 with boron and/or yttrium elements: effects on antimicrobial activity. Mater Sci Eng B 211:149–155CrossRefGoogle Scholar
  121. Webster TJ, Ejiofor JU (2004) Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials 25:4731–4739PubMedCrossRefGoogle Scholar
  122. Wei Y, Li L, Qu Y et al (2009) A novel biosensor based on photoelectro-synergistic catalysis for flow-injection analysis system/amperometric detection of organophosphorous pesticides. Anal Chim Acta 643:13PubMedCrossRefGoogle Scholar
  123. Williamson IJ, Martin CJ, McGill G et al (1997) Damp housing and asthma: a case–control study. Thorax 52:229–234PubMedPubMedCentralCrossRefGoogle Scholar
  124. Wirz S, Knuefermann P, Baumgarten G et al (2003) Head trauma and blood coagulation disorders. AnaesthaseolIntensiv 44:478–490Google Scholar
  125. Wu X, Huang YY, Kushida Y et al (2016) Broad-spectrum antimicrobial photocatalysis mediated by titanium dioxide and UVA is potentiated by addition of bromide ion via formation of hypobromite. Free Radical Bio Med 95:74–81CrossRefGoogle Scholar
  126. Xie Y, Zhou L, Huang H (2007) Bioelectrocatalytic application of titania nanotube array for molecule detection. Biosens Bioelectron 22:2812–2818PubMedCrossRefGoogle Scholar
  127. Yan YJ, Zheng MZ, Chen ZL et al (2010) Studies on preparation and photodynamic mechanism of chlorin P6-13,15-N-(cyclohexyl)cycloimide (Chlorin-H) and its antitumor effect for photodynamic therapy in vitro and in vivo. Bioorg Med Chem 18:6282–6291PubMedCrossRefGoogle Scholar
  128. Yang J, Li D, Fu J et al (2016) TiO2–CuCNFs based laccase biosensor for enhanced electrocatalysis in hydroquinone detection. J Electroanal Chem 766:16–23CrossRefGoogle Scholar
  129. Yao H, Shum AJ, Cowan M et al (2011) A contact lens with embedded sensor for monitoring tear glucose level. Biosens Bioelectron 26:3290PubMedCrossRefGoogle Scholar
  130. Yin M, Ju E, Chen Z et al (2014) Upconverting nanoparticles with a mesoporous TiO2 shell for near-infrared-triggered drug delivery and synergistic targeted cancer therapy. Chem Eur J 20:14012–14017PubMedCrossRefGoogle Scholar
  131. Yu J, Liu S, Ju H (2003) Glucose sensor for flow injection analysis of serum glucose based on immobilization of glucose oxidase in titania sol–gel membrane. Biosens Bioelectron 19:401–409PubMedCrossRefGoogle Scholar
  132. Yu S, Yun HJ, Kim YH et al (2014) Carbon-doped TiO2 nanoparticles wrapped with nanographene as a high performance photocatalyst for phenol degradation under visible light irradiation. Appl Catal B 144:893–899CrossRefGoogle Scholar
  133. Zang J, Li CM, Cui X et al (2007) Tailoring zinc oxide nanowires for high performance amperometric glucose sensor. Electroanalysis 19:1008CrossRefGoogle Scholar
  134. Zhang Z, Sun J, Hu H et al (2011) Osteoblast-like cell adhesion on porous silicon-incorporated TiO2 coating prepared by micro-arc oxidation. J Biomed Mater Res B 97:224–234CrossRefGoogle Scholar
  135. Zhang Y, Jiang Z, Huang J et al (2015) Titanate and titaniananostructured materials for environmental and energy applications: a review. RSC Adv 5:79479–79795CrossRefGoogle Scholar
  136. Zhao H, Dong Y, Jiang P et al (2015) Highly dispersed CeO2 on TiO2 nanotube: a synergistic nanocomposite with superior peroxidase-like activity. ACS Appl Mater Interfaces 7:6451–6461PubMedCrossRefGoogle Scholar
  137. Zheng R, Lin L, Xie J et al (2008) State of doped phosphorus and its influence on the physicochemical and photocatalytic properties of P-doped titania. J Phys Chem C 112:15502–15509CrossRefGoogle Scholar
  138. Zhu J, Liu X, Wang X et al (2015) Preparation of polyaniline–TiO2 nanotube composite for the development of electrochemical biosensors. Sens Actuators B 1:450–457CrossRefGoogle Scholar
  139. Zhuo Y, Chai YQ, Yuan R et al (2011) Glucose oxidase and ferrocene labels immobilized at Au/TiO2 nanocomposites with high load amount and activity for sensitive immune electrochemical measurement of ProGRP biomarker. Biosens Bioelectron 26:3838–3844PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Naveen Kumar
    • 1
  • Nar Singh Chauhan
    • 2
  • Anuj Mittal
    • 1
  • Shankar Sharma
    • 1
  1. 1.Department of ChemistryMaharshi Dayanand UniversityRohtakIndia
  2. 2.Department of BiochemistryMaharshi Dayanand UniversityRohtakIndia

Personalised recommendations