, Volume 29, Issue 6, pp 1005–1018 | Cite as

After oxidation, zinc nanoparticles lose their ability to enhance responses to odorants

  • Samantha Hagerty
  • Yasmine Daniels
  • Melissa Singletary
  • Oleg Pustovyy
  • Ludmila Globa
  • William A. MacCrehan
  • Shin Muramoto
  • Gheorghe Stan
  • June W. Lau
  • Edward E. Morrison
  • Iryna Sorokulova
  • Vitaly Vodyanoy


Electrical responses of olfactory sensory neurons to odorants were examined in the presence of zinc nanoparticles of various sizes and degrees of oxidation. The zinc nanoparticles were prepared by the underwater electrical discharge method and analyzed by atomic force microscopy and X-ray photoelectron spectroscopy. Small (1.2 ± 0.3 nm) zinc nanoparticles significantly enhanced electrical responses of olfactory neurons to odorants. After oxidation, however, these small zinc nanoparticles were no longer capable of enhancing olfactory responses. Larger zinc oxide nanoparticles (15 nm and 70 nm) also did not modulate responses to odorants. Neither zinc nor zinc oxide nanoparticles produced olfactory responses when added without odorants. The enhancement of odorant responses by small zinc nanoparticles was explained by the creation of olfactory receptor dimers initiated by small zinc nanoparticles. The results of this work will clarify the mechanisms for the initial events in olfaction, as well as to provide new ways to alleviate anosmia related to the loss of olfactory receptors.


Olfaction Olfactory receptors Electroolfactogram Perception XPS TEM AFM 



The work was funded by NIST Grant: 70 NANB14H324


  1. Aiken JD, Finke RG (1999) A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis. J Mol Catal A 145:1–44CrossRefGoogle Scholar
  2. Alivisatos AP (1996) Semiconductor clusters nanocrystals, and quantum dots. Science 271:933–937. doi: 10.1126/science.271.5251.933 CrossRefGoogle Scholar
  3. Amoore JE (1963) Stereochemical theory of olfaction. Nature 198:271–272CrossRefPubMedGoogle Scholar
  4. Barreiro A, van der Zant HSJ, Vandersypen LMK (2012) Quantum dots at room temperature carved out from few-layer graphene. Nano Lett 12:6096–6100. doi: 10.1021/nl3036977 CrossRefPubMedGoogle Scholar
  5. Bilberg K, Malte H, Wang T, Baatrup E (2010) Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (Perca fluviatilis). Aquat Toxicol 96:159–165. doi: 10.1016/j.aquatox.2009.10.019 CrossRefPubMedGoogle Scholar
  6. Bilberg K, Døving KB, Beedholm K, Baatrup E (2011) Silver nanoparticles disrupt olfaction in Crucian carp (Carassius carassius) and Eurasian perch (Perca fluviatilis). Aquat Toxicol 104:145–152. doi: 10.1016/j.aquatox.2011.04.010 CrossRefPubMedGoogle Scholar
  7. Black D, Ritter JJ, Bonevich JE, Henins A, Cline JP (2012) Nanocrystalline zinc oxide powder for x-ray diffraction metrology. Adv X Ray Anal 56:61–70Google Scholar
  8. Block E, Jang S, Matsunami H, Sekharan S, Dethier B, Ertem MZ, Gundala S, Pan Y, Li S, Li Z, Lodge SN, Ozbil M, Jiang H, Penalba SF, Batista VS, Zhuang H (2015) Implausibility of the vibrational theory of olfaction. Proc Natl Acad Sci USA 112:E2766–2774. doi: 10.1073/pnas.1503054112 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Boekhoff I, Breer H (1992) Termination of second messenger signaling in olfaction. Proc Natl Acad Sci USA 89:471–474CrossRefPubMedPubMedCentralGoogle Scholar
  10. Borisy F, Ronnett G, Cunningham A, Juilfs D, Beavo J, Snyder S (1992) Calcium/calmodulin-activated phosphodiesterase expressed in olfactory receptor neurons. J Neurosci 12:915–923PubMedGoogle Scholar
  11. Bozym RA, Thompson RB, Stoddard AK, Fierke CA (2006) Measuring picomolar intracellular exchangeable zinc in PC-12 cells using a ratiometric fluorescence biosensor. ACS Chem Biol 1:103–111CrossRefPubMedGoogle Scholar
  12. Breer H (2003a) Olfactory receptors: molecular basis for recognition and discrimination of odors. Anal Bioanal Chem 377:427–433CrossRefPubMedGoogle Scholar
  13. Breer H (2003b) Sense of smell: recognition and transduction of olfactory signals. Biochem Soc Trans 31:113–116CrossRefPubMedGoogle Scholar
  14. Brookes JC, Horsfield AP, Stoneham AM (2012) The swipe card model of odorant recognition. Sensors 12:15709–15749. doi: 10.3390/s121115709 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Brust M, Kiely CJ (2002) Some recent advances in nanostructure preparation from gold and silver particles: a short topical review. Colloids Surf A 202:175–186. doi: 10.1016/S0927-7757(01)01087-1 CrossRefGoogle Scholar
  16. Buck L, Axel R (1991) A novel multigene family may encode odorant receptors—a molecular-basis for odor recognition. Cell 65:175–187CrossRefPubMedGoogle Scholar
  17. Burd GD (1993) Morphological-study of the effects of intranasal zinc-sulfate irrigation on the mouse olfactory epithelium and olfactory-bulb. Microsc Res Tech 24:195–213. doi: 10.1002/jemt.1070240302 CrossRefPubMedGoogle Scholar
  18. Bush CF (2008) Olfactory receptor dimerization. Ph D dissertation, Emory University.
  19. Castiglioni AJ, Remis NN, Flores EN, Garcia-Anoveros J (2011) Expression and vesicular localization of mouse Trpml3 in Stria vascularis, hair cells, and vomeronasal and olfactory receptor neurons. J Comp Neurol 519:1095–1114. doi: 10.1002/cne.22554 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Chen YJ, Chi B, Zhang HZ, Chen H, Chen Y (2007) Controlled growth of zinc nanowires. Mater Lett 61:144–147. doi: 10.1016/j.matlet.2006.04.044 CrossRefGoogle Scholar
  21. Cline JP, Leoni M, Black D, Henins A, Bonevich JE, Whitfield PS, Scardi P (2013) Crystalline domain size and faulting in the new NIST SRM 1979 zinc oxide. Powder Diffr 28:S22–S32. doi: 10.1017/S0885715613001188 CrossRefGoogle Scholar
  22. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346. doi: 10.1021/cr030698+ CrossRefPubMedGoogle Scholar
  23. Daniels YC, MacCrehan WA, Vodyanoy V (2015) Characterization of olfactory-enhancing zinc metal nanoparticles. Paper presented at the IEEE international conference on nanotechnology, Rome, July 27–30Google Scholar
  24. Donaldson J, St. Pierre T, Minnich JL, Barbeau A (1973) Determination of Na+, K+, Mg2+, Cu2+, Zn2+, and Mn2+ in rat brain regions. Can J Biochem 51:87–92CrossRefPubMedGoogle Scholar
  25. Dyson GM (1938) The scientific basis of odour. Chem Ind 57:647–651CrossRefGoogle Scholar
  26. Farmen E, Mikkelsen HN, Evensen O, Einset J, Heier LS, Rosseland BO, Salbu B, Tollefsen KE, Oughton DH (2012) Acute and sub-lethal effects in juvenile Atlantic salmon exposed to low mug/L concentrations of Ag nanoparticles. Aquat Toxicol 108:78–84. doi: 10.1016/j.aquatox.2011.07.007 CrossRefPubMedGoogle Scholar
  27. Firestein S, Darrow B, Shepherd GM (1991) Activation of the sensory current in salamander olfactory receptor neurons depends on a G protein-mediated cAMP second messenger system. Neuron 6:825–835CrossRefPubMedGoogle Scholar
  28. Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, Palczewski K (2003a) Atomic-force microscopy: rhodopsin dimers in native disc membranes. Nature 421:127–128CrossRefPubMedGoogle Scholar
  29. Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, Palczewski K (2003b) Is rhodopsin dimeric in native retinal rods? Reply. Nature 426:31CrossRefGoogle Scholar
  30. Franco MI, Turin L, Mershin A, Skoulakis EMC (2011) Molecular vibration-sensing component in Drosophila melanogaster olfaction. Proc Natl Acad Sci USA 108:3797–3802. doi: 10.1073/pnas.1012293108 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Frederickson CJ, Giblin LJ, Krezel A, McAdoo DJ, Mueller RN, Zeng Y, Balaji RV, Masalha R, Thompson RB, Fierke CA, Sarvey JM, de Valdenebro M, Prough DS, Zornow MH (2006) Concentrations of extracellular free zinc (pZn)(e) in the central nervous system of man, rat and rabbit during anesthesia, ischemia and reperfusion. Exp Neurol 202:523–523CrossRefGoogle Scholar
  32. Fugono J, Fujimoto K, Yasui H, Kawabe K, Yoshikawa Y, Kojima Y, Sakurai H (2002) Metallokinetic study of zinc in the blood of normal rats given insulinomimetic zinc(II) complexes and improvement of diabetes mellitus in type 2 diabetic GK rats by their oral administration. Drug Metab Pharmacokinet 17:340–347CrossRefPubMedGoogle Scholar
  33. Fukutani Y, Ishii J, Noguchi K, Kondo A, Yohda M (2012) An improved bioluminescence-based signaling assay for odor sensing with a yeast expressing a chimeric olfactory receptor. Biotechnol Bioeng 109:3143–3151. doi: 10.1002/bit.24589 CrossRefPubMedGoogle Scholar
  34. Gane S, Georganakis D, Maniati K, Vamvakias M, Ragoussis N, Skoulakis EM, Turin L (2013) Molecular vibration-sensing component in human olfaction. PLoS One 8:e55780. doi: 10.1371/journal.pone.0055780 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Gao XL, Du ZY, Patel TB (2005) Copper and zinc inhibit G alpha(s) function. J Biol Chem 280:2579–2586CrossRefPubMedGoogle Scholar
  36. Gu X-F, Furuharaa T, Zhang W-Z (2016) PTCLab: free and open-source software for calculating phase transformation crystallography. J Appl Crystallogr 49:1–8CrossRefGoogle Scholar
  37. Hall RA (2009) Olfactory receptor interactions with other receptors. Ann NY Acad Sci 1170:147–149CrossRefPubMedGoogle Scholar
  38. Harel D, Carmel L, Lancet D (2003) Towards an odor communication system. Comp Biol Chem 27:121–133CrossRefGoogle Scholar
  39. Horning MS, Trombley PQ (2001) Zinc and copper influence excitability of rat olfactory bulb neurons by multiple mechanisms. J Neurophysiol 86:1652–1660PubMedGoogle Scholar
  40. Horning MS, Blakemore LJ, Trombley PQ (2000) Endogenous mechanisms of neuroprotection: role of zinc, copper, and carnosine. Brain Res 852:56–61. doi: 10.1016/S0006-8993(99)02215-5 CrossRefPubMedGoogle Scholar
  41. Jena P, Khanna SN, Rao BK (1996) Stability and electronic structure of cluster assembled materials. In: Sattler K (ed) Cluster assembled materials. Trans Tech Publications, Zurich, pp 1–25Google Scholar
  42. Jia H, Pustovyy O, Waggoner P, Beyers R, Schumacher J, Barrett J, Morrison E, Gillette R, Denney T, Vodyanoy V, Deshpande G (2012) Functional MRI of the olfactory system in awake and anesthetized dogs. Paper presented at the 20th annual meeting of the International Society for Magnetic Resonance in Medicine, MelbourneGoogle Scholar
  43. Jia H, Pustovyy OM, Waggoner P, Beyers RJ, Schumacher J, Wildey C, Barrett J, Morrison E, Salibi N, Denney TS, Vodyanoy VJ, Deshpande G (2014) Functional MRI of the olfactory system in conscious dogs. PLoS One 9:e86362. doi: 10.1371/journal.pone.0086362 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Jia H, Pustovyy OM, Wang Y, Waggoner P, Beyers RJ, Schumacher J, Wildey C, Morrison E, Salibi N, Denney TS, Vodyanoy VJ, Deshpande G (2016) Enhancement of odor-induced activity in the canine brain by zinc nanoparticles: a functional MRI study in fully unrestrained conscious dogs. Chem Senses 41:53–67. doi: 10.1093/chemse/bjv054 CrossRefPubMedGoogle Scholar
  45. Khanna SN, Rao BK, Jena P (2002) Magic numbers in metallo-inorganic clusters: chromium encapsulated in silicon cages. Phys Rev Lett 89:016803. doi: 10.1103/PhysRevLett.89.016803 CrossRefPubMedGoogle Scholar
  46. Klein C, Heyduk T, Sunahara RK (2004) Zinc inhibition of adenylyl cyclase correlates with conformational changes in the enzyme. Cell Signal 16:1177–1185CrossRefPubMedGoogle Scholar
  47. Kramer RH, Molokanova E (2001) Modulation of cyclic-nucleotide-gated channels and regulation of vertebrate phototransduction. J Exp Biol 204:2921–2931PubMedGoogle Scholar
  48. Kruyt HR (1952) Colloid science, vol VI. Elsevier, New YorkGoogle Scholar
  49. Lancet D, Benarie N (1993) Olfactory receptors. Curr Biol 3:668–674CrossRefPubMedGoogle Scholar
  50. Lancet D, Pace U (1987) The molecular-basis of odor recognition. Trends Biochem Sci 12:63–66CrossRefGoogle Scholar
  51. Li Y, Maret W (2009) Transient fluctuations of intracellular zinc ions in cell proliferation. Exp Cell Res 315:2463–2470CrossRefPubMedGoogle Scholar
  52. Lu C, Cheng Y, Pan Q, Tao X, Yang B, Ye G (2016) One-dimensional growth of zinc crystals on a liquid surface. Sci Rep 6:19870. doi: 10.1038/srep19870 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Mai NT, Thuy TT, Mott DM, Maenosono S (2013) Chemical synthesis of blue-emitting metallic zinc nano-hexagons. Cryst Eng Comm 15:6606–6610. doi: 10.1039/C3CE40801A CrossRefGoogle Scholar
  54. Matijevic E, Goia D (2007) Formation mechanisms of uniform colloid particles. Croat Chem Acta 80:485–491Google Scholar
  55. Matulionis DH (1975) Ultrastructural study of mouse olfactory epithelium following destruction by ZnSO4 and its subsequent regeneration. Am J Anat 142:67–89. doi: 10.1002/aja.1001420106 CrossRefPubMedGoogle Scholar
  56. Mitra K, Ubarretxena-Belandia I, Taguchi T, Warren G, Engelman DM (2004) Modulation of the bilayer thickness of exocytic pathway membranes by membrane proteins rather than cholesterol. Proc Natl Acad Sci USA 101:4083–4088. doi: 10.1073/pnas.0307332101 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Moncrieff RW (1954) The characterization of odours. J Physiol 125:453–465CrossRefPubMedPubMedCentralGoogle Scholar
  58. Moore CH, Pustovyy O, Dennis JC, Moore T, Morrison EE, Vodyanoy VJ (2012) Olfactory responses to explosives associated odorants are enhanced by zinc nanoparticles. Talanta 88:730–733. doi: 10.1016/j.talanta.2011.11.024 CrossRefPubMedGoogle Scholar
  59. Morkoç H, Özgur Ü (2009) Zinc oxide: fundamentals, materials and device technology. Wilay, WeinheimCrossRefGoogle Scholar
  60. Percival MD, Yeh B, Falgueyret J-P (1997) Zinc dependent activation of cAMP-specific phosphodiesterase (PDE4A). Biochem Biophys Res Commun 241:175–180CrossRefPubMedGoogle Scholar
  61. Samoylov AM, Samoylova TI, Pustovyy OM, Samoylov AA, Toivio-Kinnucan MA, Morrison NE, Globa LP, Gale WF, Vodyanoy V (2005) Novel metal clusters isolated from blood are lethal to cancer cells. Cells Tissues Organs 179:115–124CrossRefPubMedGoogle Scholar
  62. Sanz G, Pajot-Augy E (2013) Deciphering activation of olfactory receptors using heterologous expression in Saccharomyces cerevisiae and bioluminescence resonance energy transfer. Olfactory Recept Methods Protoc 1003:149–160CrossRefGoogle Scholar
  63. Simon MI, Strathmann MP, Gautam N (1991) Diversity of g-proteins in signal transduction. Science 252:802–808CrossRefPubMedGoogle Scholar
  64. Simonson T, Brooks CL (1996) Charge screening and the dielectric constant of proteins: insights from molecular dynamics. J Am Chem Soc 118:8452–8458. doi: 10.1021/ja960884f CrossRefGoogle Scholar
  65. Sinnarajah S, Ezeh PI, Pathirana S, Moss AG, Morrison EE, Vodyanoy V (1998) Inhibition and enhancement of odorant-induced cAMP accumulation in rat olfactory cilia by antibodies directed against Gas/olf- and Gai-protein subunits. FEBS Lett 426:377–380CrossRefPubMedGoogle Scholar
  66. Sinnarajah S, Dessauer CW, Srikumar D, Chen J, Yuen J, Yllma S, Dennis JC, Morrison EE, Vodyanoy V, Kehrl JH (2001) RGS2 regulates signal transduction in olfactory neurons by attenuating activation of adenylyl cyclase III. Nature 409:1051–1055CrossRefPubMedGoogle Scholar
  67. Sklar PB, Anholt RRH, Snyder SH (1986) The odorant-sensitive adenylate-cyclase of olfactory receptor-cells—differential stimulation by distinct classes of odorants. J Biol Chem 261:5538–5543Google Scholar
  68. Takeda A (2000) Movement of zinc and its functional significance in the brain. Brain Res Brain Res Rev 34:137–148CrossRefPubMedGoogle Scholar
  69. Takeda A (2001) Zinc homeostasis and functions of zinc in the brain. Biometals 14:343–351CrossRefPubMedGoogle Scholar
  70. Takeda A, Ohnuma M, Sawashita J, Okada S (1997) Zinc transport in the rat olfactory system. Neurosci Lett 225:69–71CrossRefPubMedGoogle Scholar
  71. Thomas JM (1988) Colloidal metals—past, present and future. Pure Appl Chem 60:1517–1528CrossRefGoogle Scholar
  72. Tokushige M, Nishikiori T, Ito Y (2010) Plasma-induced cathodic discharge electrolysis to form various metal/alloy nanoparticles. Russ J Electrochem 46:619–626. doi: 10.1134/s1023193510060042 CrossRefGoogle Scholar
  73. Turin L (1996) A spectroscopic mechanism for primary olfactory reception. Chem Senses 21:773–791CrossRefPubMedGoogle Scholar
  74. Turin L, Gane S, Georganakis D, Maniati K, Skoulakis EMC (2015) Plausibility of the vibrational theory of olfaction. Proc Natl Acad Sci USA 112:E3154. doi: 10.1073/pnas.1508035112 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Viswaprakash N, Dennis JC, Samoylov AM, Josephson EM, Morrison EE, Vodyanoy V (2006) Enhancement of odorant-induced responses in olfactory receptor neurons by zinc nanoclusters. Paper presented at the Society for Neuroscience annual meeting, Atlanta, October 16, 2006Google Scholar
  76. Viswaprakash N, Dennis JC, Globa L, Pustovyy O, Josephson EM, Kanju P, Morrison EE, Vodyanoy V (2009) Enhancement of odorant-induced response in olfactory receptor neurons by zinc nanoparticles. Chem Senses 34:547–557CrossRefPubMedGoogle Scholar
  77. Viswaprakash N, Josephson EM, Dennis JC, Yilma S, Morrison EE, Vodyanoy VJ (2010) Odorant response kinetics from cultured mouse olfactory epithelium at different ages in vitro. Cells Tissues Organs 192:361–373CrossRefPubMedGoogle Scholar
  78. Vodyanoy V (2010) Zinc nanoparticles interact with olfactory receptor neurons. Biometals 23:1097–1103. doi: 10.1007/s10534-010-9355-8 CrossRefPubMedGoogle Scholar
  79. Vodyanoy V, Daniels Y, Pustovyy O, MacCrehan WA, Muramoto S, Stan G (2016) Engineered metal nanoparticles in the sub-nanomolar levels kill cancer cells. Int J Nanomed 11:1–10CrossRefGoogle Scholar
  80. Wade F, Espagne A, Persuy MA, Vidic J, Monnerie R, Merola F, Pajot-Augy E, Sanz G (2011) Relationship between homo-oligomerization of a mammalian olfactory receptor and its activation state demonstrated by bioluminescence resonance energy transfer. J Biol Chem 286:15252–15259. doi: 10.1074/jbc.M110.184580 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Wöll C (2007) The chemistry and physics of zinc oxide surfaces. Prog Surf Sci 82:55–120. doi: 10.1016/j.progsurf.2006.12.002 CrossRefGoogle Scholar
  82. Wright RH (1977) Odor and molecular vibration: neural coding of olfactory information. J Theor Biol 64:473–502CrossRefPubMedGoogle Scholar
  83. Yoo MH, Wei CT (1967) Slip modes of hexagonal-close-packed metals. J Appl Phys 38:4317–4322. doi: 10.1063/1.1709121 CrossRefGoogle Scholar
  84. Zhang Q, Zhang D, Li N, Lu Y, Yao Y, Li S, Liu Q (2016) Zinc nanoparticles-equipped bioelectronic nose using a microelectrode array for odorant detection. Anal Sci 32:387–393. doi: 10.2116/analsci.32.387 CrossRefPubMedGoogle Scholar
  85. Zufall F, Firestein S, Shepherd GM (1991) Analysis of single cyclic-nucleotide gated channels in olfactory receptor-cells. J Neurosci 11:3573–3580PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Samantha Hagerty
    • 1
  • Yasmine Daniels
    • 2
  • Melissa Singletary
    • 1
  • Oleg Pustovyy
    • 1
  • Ludmila Globa
    • 1
  • William A. MacCrehan
    • 2
  • Shin Muramoto
    • 2
  • Gheorghe Stan
    • 2
  • June W. Lau
    • 2
  • Edward E. Morrison
    • 1
  • Iryna Sorokulova
    • 1
  • Vitaly Vodyanoy
    • 1
    • 3
  1. 1.Department of Anatomy, Physiology and PharmacologyAuburn University College of Veterinary MedicineAuburnUSA
  2. 2.Material Measurement LaboratoryNational Institute of Standards and TechnologyGaithersburgUSA
  3. 3.Auburn UniversityAuburnUSA

Personalised recommendations