, Volume 29, Issue 5, pp 817–826 | Cite as

7-Hydroxytropolone produced and utilized as an iron-scavenger by Pseudomonas donghuensis

  • Zhen Jiang
  • Min Chen
  • Xinyan Yu
  • Zhixiong Xie


Pseudomonas donghuensis can excrete large quantities of iron chelating substances in iron-restricted environments. At least two kinds of iron-chelator can be found in the culture supernatant: fluorescent siderophores pyoverdins, and an ethyl acetate-extractable non-fluorescent substance. The non-fluorescent substance was the dominant contributor to the iron chelating activity of the culture supernatant of P. donghuensis. Electron ionization mass spectrometry, NMR spectroscopy, and IR spectroscopy identified the non-fluorescent iron-chelator as 7-hydroxytropolone. The stoichiometry of 7-hydroxytropolone ferric complex was determined to be 2:1 by the continuous variation method. The production of 7-hydroxytropolone was repressible by iron in the medium. Moreover, the inhibited growth of doubly siderophore-deficient strain of P. donghuensis under iron-limiting conditions could be partly restored by 7-hydroxytropolone. Thus, 7-hydroxytropolone was considered to play a previously undiscovered role as an iron-scavenger for P. donghuensis.


7-Hydroxytropolone Pseudomonas donghuensis Siderophore 7-Hydroxytropolone ferric complex 



We thank Dr Yi Liu, Fenglei Jiang, Zhiling Zhang for analysis of ferric 7-hydroxytropolone complex, and Bo Tang for analysis of NMR spectra of 7-hydroxytropolone.This work was supported by the National Basic Research Program of China (973 Program, No. 2013CB933904), the National Natural Science Foundation of China (21272182, 31570090). This project is partially supported by the Chinese 111 Project Grant B06018, the National Fund for Fostering Talents in Basic Sciences (J1103513), and the Laboratory (Innovative) Research Fund of Wuhan University.

Supplementary material

10534_2016_9954_MOESM1_ESM.doc (6.2 mb)
Supplementary material 1 (DOC 6740 kb)


  1. Actis LA, Fish W, Crosa JH, Kellerman K, Ellenberger SR, Hauser FM, Sanders-Loehr J (1986) Characterization of anguibactin, a novel siderophore from Vibrio anguillarum 775 (pJM1). J Bacteriol 167:57–65PubMedPubMedCentralGoogle Scholar
  2. Akers HA, Abrego VA, Garland E (1980) Thujaplicins from Thuja plicata as iron transport agents for Salmonella typhimurium. J Bacteriol 41:164–168Google Scholar
  3. Allen NE, Alborn WE, Hobbs JN, Kirst HA (1982) 7-Hydroxytropolone: an inhibitor of aminoglycoside-2″-O-adenylyltransferase. Antimicrob Agents Chemother 22:824–831. doi: 10.1128/AAC.22.5.824 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Azegami K, Nishiyama K, Watanabe Y, Kadota I, Ohuchi A, Fukazawa C (1987) Pseudomonas plantarii sp. nov., the causal agent of rice seedling blight. Int J Syst Bacteriol 37:144–152. doi: 10.1099/00207713-37-2-144 CrossRefGoogle Scholar
  5. Azegami K, Nishiyama K, Kato H (1988) Effect of iron limitation on “Pseudomonas plantarii” growth and tropolone and protein production. Appl Environ Microbiol 54:844–847PubMedPubMedCentralGoogle Scholar
  6. Bentley R (2008) A fresh look at natural tropolonoids. Nat Prod Rep 25:118–138. doi: 10.1039/b711474e CrossRefPubMedGoogle Scholar
  7. Boukhalfa H, Crumbliss AL (2002) Chemical aspects of siderophore mediated iron transport. Biometals 15:325–339. doi: 10.1023/A:1020218608266 CrossRefPubMedGoogle Scholar
  8. Brickman TJ, Hansel JG, Miller MJ, Armstrong SK (1996) Purification, spectroscopic analysis and biological activity of the macrocyclic dihydroxamate siderophore alcaligin produced by Bordetella pertussis and Bordetella bronchiseptica. Biometals 9:191–203. doi: 10.1007/BF00144625 CrossRefPubMedGoogle Scholar
  9. Budihas SR, Gorshkova I, Gaidamakov S, Wamiru A, Bona MK, Parniak MA, Crouch RJ, McMahon JB, Beutler JA, Le Grice SFJ (2005) Selective inhibition of HIV-1 reverse transcriptase-associated ribonuclease H activity by hydroxylated tropolones. Nucl Acids Res 33:1249–1256. doi: 10.1093/nar/gki268 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Budzikiewicz H (1993) Secondary metabolites from fluorescent pseudomonads. FEMS Microbiol Rev 104:209–228. doi: 10.1111/j.1574-6968.1993.tb05868.x CrossRefGoogle Scholar
  11. Budzikiewicz H (2004) Siderophores of the Pseudomonadaceae sensu stricto (Fluorescent and Non-Fluorescent Pseudomonas spp.). In: Herz W, Falk H, Kirby GW (eds) Progress in the Chemistry of Organic Natural Products, vol 87. Springer, Vienna, pp 81–237. doi: 10.1007/978-3-7091-0581-8_2 CrossRefGoogle Scholar
  12. Chambers CE, McIntyre DD, Mouck M, Sokol PA (1996) Physical and structural characterization of yersiniophore, a siderophore produced by clinical isolates of Yersinia enterocolitica. Biometals 9:157–167. doi: 10.1007/BF00144621 CrossRefPubMedGoogle Scholar
  13. Cornelis P (2010) Iron uptake and metabolism in pseudomonads. Appl Microbiol Biotechnol 86:1637–1645. doi: 10.1007/s00253-010-2550-2 CrossRefPubMedGoogle Scholar
  14. Cornelis P, Matthijs S (2002) Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environ Microbiol 4:787–798. doi: 10.1046/j.1462-2920.2002.00369.x CrossRefPubMedGoogle Scholar
  15. Dewar MJS (1945) Structure of stipitatic acid. Nature 155:50–51. doi: 10.1038/155050b0 CrossRefGoogle Scholar
  16. Gao J, Xie G, Peng F, Xie Z (2015) Pseudomonas donghuensis sp. nov., exhibiting high-yields of siderophore. Antonie Van Leeuwenhoek 107:83–94. doi: 10.1007/s10482-014-0306-1 CrossRefPubMedGoogle Scholar
  17. Gardner JAF, Barton GM, MacLean H (1957) Occurrence of 2,7-dihydroxy-4-isopropyl-2,4,6-cycloheptatrien-1-one (7-hydroxy-4-isopropyltropolone) in western red cedar. Can J Chem 35:1039–1048. doi: 10.1139/v57-141 CrossRefGoogle Scholar
  18. Griffiths E (1987) Iron in biological systems. In: Bullen JJ, Griffiths E (eds) Iron and infection. Wiley, Chichester, pp 1–25Google Scholar
  19. Hattermann DR, Ries SM (1989) Motility of Pseudomonas syringae pv. glycinea and its role in infection. Phytopathology 79:284–289. doi: 10.1094/Phyto-79-284 CrossRefGoogle Scholar
  20. Hohnadel D, Meyer JM (1988) Specificity of pyoverdine-mediated iron uptake among fluorescent Pseudomonas strains. J Bacteriol 170:4865–4873PubMedPubMedCentralGoogle Scholar
  21. Kirst HA, Marconi GG, Counter FT, Ensminger PW, Jones ND, Chaney MO, Toth JE, Allen NE (1982) Synthesis and characterization of a novel inhibitor of an aminoglycoside-inactivating enzyme. J Antibiot 35:1651–1657. doi: 10.7164/antibiotics.35.1651 CrossRefPubMedGoogle Scholar
  22. Korth H, Pulverer G, Römer A, Budzikiewicz H (1981) 7-Hydroxytropolon from Pseudomonas sp. [1]. Z. Naturforsch 36 c:728–729. doi: 10.1515/znc-1981-9-1006 Google Scholar
  23. Lindberg GD, Larkin JM, Whaley HA (1980) Production of tropolone by a Pseudomonas. J Nat Prod 43:592–594. doi: 10.1021/np50011a011 CrossRefGoogle Scholar
  24. Meck C, D’Erasmo MP, Hirsch DR, Murelli RP (2014) The biology and synthesis of α-hydroxytropolones. MedChemComm 5:842–852. doi: 10.1039/c4md00055b CrossRefPubMedPubMedCentralGoogle Scholar
  25. Meyer JM, Hohnadel D, Hallé F (1989) Cepabactin from Pseudomonas cepacia, a new type of siderophore. J Gen Microbiol 135:1479–1487. doi: 10.1099/00221287-135-6-1479 PubMedGoogle Scholar
  26. Mossialos D, Meyer JM, Budzikiewicz H, Wolff U, Koedam N, Baysse C, Anjaiah V, Cornelis P (2000) Quinolobactin, a new siderophore of Pseudomonas fluorescens ATCC 17400, the production of which is repressed by the cognate pyoverdine. Appl Environ Microbiol 66:487–492. doi: 10.1128/AEM.66.2.487-492.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Neilands JB (1981) Microbial iron compounds. Ann Rev Biochem 50:715–731. doi: 10.1146/ CrossRefPubMedGoogle Scholar
  28. Nozoe T, Seto S, Ito S, Sato M, Katono T (1952) Hydroxy derivatives of tropolone, α-thujaplicin and hinokitiol. Proc Japan Acad 28:488–492. doi: 10.2183/pjab1945.28.488 Google Scholar
  29. Oka Y, Matsuo S (1956) Spectrophotometric studies on organometallic complexes used in analytical chemistry on the germanium complex with 3-hydroxytropolone. Nippon Kagaku Zassi. doi: 10.1246/nikkashi1948.77.1663 Google Scholar
  30. Pauson PL (1955) Tropones and tropolones. Chem Rev 55:9–136. doi: 10.1021/cr50001a002 CrossRefGoogle Scholar
  31. Piettre SR, Ganzhorn A, Hoflack J, Islam K, Hornsperger JM (1997) α-Hydroxytropolones: a new class of potent inhibitors of inositol monophosphatase and other bimetallic enzymes. J Am Chem Soc 119:3201–3204. doi: 10.1021/ja9634278 CrossRefGoogle Scholar
  32. Ravel J, Cornelis P (2003) Genomics of pyoverdine-mediated iron uptake in pseudomonads. Trends Microbiol 11:195–200CrossRefPubMedGoogle Scholar
  33. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56. doi: 10.1016/0003-2697(87)90612-9 CrossRefPubMedGoogle Scholar
  34. Winkelmann G (ed) (2001) Microbial transport systems. Wiley, WeinheimGoogle Scholar
  35. Winkelmann G (2002) Microbial siderophore-mediated transport. Biochem Soc Trans 30:691–696. doi: 10.1042/BST0300691 CrossRefPubMedGoogle Scholar
  36. Yamamoto S, Okujo N, Sakakibara Y (1994) Isolation and structure elucidation of acinetobactin, a novel siderophore from Acinetobacter baumannii. Arch Microbiol 162:249–254. doi: 10.1007/BF00301846 PubMedGoogle Scholar
  37. Yu X, Chen M, Jiang Z, Hu Y, Xie Z (2014) The two-component regulators GacS and GacA positively regulate a nonfluorescent siderophore through the Gac/Rsm signaling cascade in high-siderophore-yielding Pseudomonas sp. Strain HYS. J Bacteriol 196:3259–3270. doi: 10.1128/JB.01756-14 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), State Key Laboratory of VirologyWuhan University, Hubei Provincial Cooperative Innovation Center of Industrial FermentationWuhanPeople’s Republic of China

Personalised recommendations