, Volume 29, Issue 4, pp 551–571 | Cite as

An overview of siderophores for iron acquisition in microorganisms living in the extreme

  • Luis O. De Serrano
  • Anne K. Camper
  • Abigail M. Richards


Siderophores are iron-chelating molecules produced by microbes when intracellular iron concentrations are low. Low iron triggers a cascade of gene activation, allowing the cell to survive due to the synthesis of important proteins involved in siderophore synthesis and transport. Generally, siderophores are classified by their functional groups as catecholates, hydroxamates and hydroxycarboxylates. Although other chemical structural modifications and functional groups can be found. The functional groups participate in the iron-chelating process when the ferri-siderophore complex is formed. Classified as acidophiles, alkaliphiles, halophiles, thermophiles, psychrophiles, piezophiles, extremophiles have particular iron requirements depending on the environmental conditions in where they grow. Most of the work done in siderophore production by extremophiles is based in siderophore concentration and/or genomic studies determining the presence of siderophore synthesis and transport genes. Siderophores produced by extremophiles are not well known and more work needs to be done to elucidate chemical structures and their role in microorganism survival and metal cycling in extreme environments.


Iron acquisition Siderophores Siderophore synthesis and transport Extremophiles 



Special thanks for the co-authors, Drs. Abigail M. Richards and Anne K. Camper, for their thoughtful insight and review of the manuscript. Thank you to members of the Camper Laboratory and graduate students and staff from the Center for Biofilm Engineering, Montana State University, Bozeman, USA.

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Abe F (2013) Dynamic structural changes in microbial membranes in response to high hydrostatic pressure analyzed using time-resolved fluorescence anisotropy measurement. Biophys Chem 183:3–8. doi: 10.1016/j.bpc.2013.05.005 PubMedCrossRefGoogle Scholar
  2. Adams JB, Palmer F, Staley JT (1992) Rock weathering in deserts—mobilization and concentration of ferric iron by microorganisms. Geomicrobiol J 10:99–114CrossRefGoogle Scholar
  3. Amaresan N, Kumar K, Sureshbabu K, Madhuri K (2014) Plant growth-promoting potential of bacteria isolated from active volcano sites of Barren Island, India. Lett Appl Microbiol 58:130–137. doi: 10.1111/lam.12165 PubMedCrossRefGoogle Scholar
  4. Amin S, Green D, Kupper F, Carrano C (2009) Vibrioferrin, an unusual marine siderophore: iron binding, photochemistry, and biological implications. Inorg Chem 48:11451–11458. doi: 10.1021/ic9016883 PubMedCrossRefGoogle Scholar
  5. Anderson I et al (2011) Novel insights into the diversity of catabolic metabolism from ten haloarchaeal genomes. Plos One 6:12. doi: 10.1371/journal.pone.0020237 Google Scholar
  6. Balcazar W, Rondon J, Rengifo M, Ball MM, Melfo A, Gomez W, Yarzabal LA (2015) Bioprospecting glacial ice for plant growth promoting bacteria. Microbiol Res 177:1–7. doi: 10.1016/j.micres.2015.05.001 PubMedCrossRefGoogle Scholar
  7. Bale SJ, Goodman K, Rochelle PA, Marchesi JR, Fry JC, Weightman AJ, Parkes RJ (1997) Desulfovibrio profundus sp nov, a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea. Int J Syst Bacteriol 47:515–521PubMedCrossRefGoogle Scholar
  8. Bamforth SS (1984) Microbial distributions in Arizona Deserts and Woodlands. Soil Biol Biochem 16:133–137. doi: 10.1016/0038-0717(84)90103-2 CrossRefGoogle Scholar
  9. Barbeau K, Zhang GP, Live DH, Butler A (2002) Petrobactin, a photoreactive siderophore produced by the oil-degrading marine bacterium marinobacter hydrocarbonoclasticus. J Am Chem Soc 124:378–379. doi: 10.1021/ja0119088 PubMedCrossRefGoogle Scholar
  10. Barbeau K, Rue EL, Trick CG, Bruland KT, Butler A (2003) Photochemical reactivity of siderophores produced by marine heterotrophic bacteria and cyanobacteria based on characteristic Fe(III) binding groups. Limnol Oceanogr 48:1069–1078CrossRefGoogle Scholar
  11. Bau M, Tepe N, Mohwinkel D (2013) Siderophore-promoted transfer of rare earth elements and iron from volcanic ash into glacial meltwater, river and ocean water Earth Planetary. Sci Lett 364:30–36. doi: 10.1016/j.epsl.2013.01.002 Google Scholar
  12. Beam JP, Jay ZJ, Kozubal MA, Inskeep WP (2014) Niche specialization of novel Thaumarchaeota to oxic and hypoxic acidic geothermal springs of Yellowstone National Park. ISME J 8:938–951. doi: 10.1038/ismej.2013.193 PubMedCrossRefGoogle Scholar
  13. Bednarova L, Brandel J, d’Hardemare A, Bednar J, Serratrice G, Pierre J (2008) Vesicles to concentrate iron in low-iron media: an attempt to mimic marine siderophores. Chem-A Eur J 14:3680–3686. doi: 10.1002/chem.200701644 CrossRefGoogle Scholar
  14. Bergeron RJ, Liu ZR, McManis JS, Wiegand J (1992) Structural alterations in desferrioxamine compatible with iron clearance in animals. J Med Chem 35:4739–4744. doi: 10.1021/jm00103a012 PubMedCrossRefGoogle Scholar
  15. Berti AD, Thomas MG (2009) Analysis of achromobactin biosynthesis by pseudomonas syringae pv. syringae B728a. J Bacteriol 191:4594–4604. doi: 10.1128/jb.00457-09 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bister B, Bischoff D, Nicholson GJ, Valdebenito M, Schneider K, Winkelmann G, Hantke K, Sussmuth RD (2004) The structure of salmochelins: C-glucosylated enterobactins of Salmonella enterica. Biometals 17:471–481. doi: 10.1023/B:BIOM.0000029432.69418.6a PubMedCrossRefGoogle Scholar
  17. Blum JS, Bindi AB, Buzzelli J, Stolz JF, Oremland RS (1998) Bacillus arsenicoselenatis, sp nov, and Bacillus selenitireducens, sp nov: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 171:19–30CrossRefGoogle Scholar
  18. Bonnefoy V, Holmes D (2012) Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environments. Environ Microbiol 14:1597–1611. doi: 10.1111/j.1462-2920.2011.02626.x PubMedCrossRefGoogle Scholar
  19. Boyer E, Bergevin I, Malo D, Gros P, Cellier MFM (2002) Acquisition of Mn(II) in addition to Fe(II) is required for full virulence of Salmonella enterica serovar Typhimurium. Infect Immun 70:6032–6042. doi: 10.1128/iai.70.11.6032-6042.2002 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Brito EMS et al (2014) Microbial diversity in Los Azufres geothermal field (Michoacan, Mexico) and isolation of representative sulfate and sulfur reducers. Extremophiles 18:385–398. doi: 10.1007/s00792-013-0624-7 PubMedCrossRefGoogle Scholar
  21. Butler A, Theisen RM (2010) Iron (III)-siderophore coordination chemistry: reactivity of marine siderophores. Coordin Chem Rev 254:288–296. doi: 10.1016/j.ccr.2009.09.010 CrossRefGoogle Scholar
  22. Butler A, Martinez J, Barbeau K (2001) Reactivity of new self-assembling amphiphilic siderophores and alpha-hydroxy acid-containing siderophores from oceanic bacteria. J Inorg Biochem 86:30Google Scholar
  23. Buyer JS, Delorenzo V, Neilands JB (1991) Production of the siderophore aerobactin by a halophilic pseudomonad. Appl Environ Microbiol 57:2246–2250PubMedPubMedCentralGoogle Scholar
  24. Calo D, Kaminski L, Eichler J (2010) Protein glycosylation in Archaea: Sweet and extreme. Glycobiology 20:1065–1076. doi: 10.1093/glycob/cwq055 PubMedCrossRefGoogle Scholar
  25. Carpenter C, Payne SM (2014) Regulation of iron transport systems in enterobacteriaceae in response to oxygen and iron availability. J Inorg Biochem 133:110–117. doi: 10.1016/j.jinorgbio.2014.01.007 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Christiaen SEA, Matthijs N, Zhang X-H, Nelis HJ, Bossier P, Coenye T (2014) Bacteria that inhibit quorum sensing decrease biofilm formation and virulence in Pseudomonas aeruginosa PAO1. Path Dis 70:271–279. doi: 10.1111/2049-632x.12124 CrossRefGoogle Scholar
  27. Cobessi D, Celia H, Pattus F (2005a) Crystal structure at high resolution of ferric-pyochelin and its membrane receptor FptA from Pseudomonas aeruginosa. J Mol Biol 352:893–904. doi: 10.1016/j.jmb.2005.08.004 PubMedCrossRefGoogle Scholar
  28. Cobessi D, Celia H, Wirth C, Schalk I, Pattus F (2005b) Structures of iron-siderophore outer membrane receptors from P. aeruginosa. Eur Biophys J 34:642Google Scholar
  29. Connell L, Barrett A, Templeton A, Staudigel H (2009) Fungal diversity associated with an active deep sea volcano: vailulu’u seamount, samoa. Geomicrobiol J 26:597–605. doi: 10.1080/01490450903316174 CrossRefGoogle Scholar
  30. Cornelis P, Matthijs S, Van Oeffelen L (2009) Iron uptake regulation in Pseudomonas aeruginosa. Biometals 22:15–22. doi: 10.1007/s10534-008-9193-0 PubMedCrossRefGoogle Scholar
  31. Cotton JL, Tao J, Balibar CJ (2009) Identification and characterization of the staphylococcus aureus gene cluster coding for staphyloferrin A. Biochem 48:1025–1035. doi: 10.1021/bi801844c CrossRefGoogle Scholar
  32. Crognale S, Mathe I, Cardone V, Stazi SR, Raduly B (2013) Halobacterial community analysis of Mierlei Saline Lake in Transylvania (Romania). Geomicrobiol J 30:801–812. doi: 10.1080/01490451.2013.774073 CrossRefGoogle Scholar
  33. Crosa JH, Mey AR, Payne SM (2004) Iron transport in bacteria, 1st edn. ASM Press, Washington, DCCrossRefGoogle Scholar
  34. Deming JW, Colwell RR (1981) Barophilic Bacteria Associated with Deep-Sea Animals. Bioscience 31:507–511. doi: 10.2307/1308493 CrossRefGoogle Scholar
  35. Dhungana S et al (2007) Purification and characterization of rhodobactin: a mixed ligand siderophore from Rhodococcus rhodochrous strain OFS. Biometals 20:853–867. doi: 10.1007/s10534-006-9079-y PubMedCrossRefGoogle Scholar
  36. Dimise EJ, Widboom PF, Bruner SD (2008) Structure elucidation and biosynthesis of fuscachelins peptide siderophores from the moderate thermophile Thermobifida fusca. Proc Natl Acad Sci USA 105:15311–15316. doi: 10.1073/pnas.0805451105 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Doukyu N, Ogino H (2010) Organic solvent-tolerant enzymes. Biochem Eng J 48:270–282. doi: 10.1016/j.bej.2009.09.009 CrossRefGoogle Scholar
  38. Drechsel H, Metzger J, Freund S, Jung G, Boelaert JR, Winkelmann G (1991) Rhizoferrin—a novel siderophore from the fungus rhizopus-microsporus var rhizopodiformis. Biol Met 4:238–243. doi: 10.1007/bf01141187 CrossRefGoogle Scholar
  39. Eichler J (2003) Facing extremes: archaeal surface-layer (glyco) proteins. Microbiol 149:3347–3351. doi: 10.1099/mic.0.26591-0 CrossRefGoogle Scholar
  40. Ejje N, Soe CZ, Gu J, Codd R (2013) The variable hydroxamic acid siderophore metabolome of the marine actinomycete Salinispora tropica CNB-440. Metallomics 5:1519–1528. doi: 10.1039/c3mt00230f PubMedCrossRefGoogle Scholar
  41. Emmerich M, Bhansali A, Loesekann-Behrens T, Schroeder C, Kappler A, Behrens S (2012) Abundance, distribution, and activity of Fe(II)-oxidizing and Fe(iii)-reducing microorganisms in hypersaline sediments of Lake Kasin, Southern Russia. Appl Environ Microbiol 78:4386–4399. doi: 10.1128/aem.07637-11 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Fang J, Zhang L, Bazylinski DA (2010) Deep-sea piezosphere and piezophiles: geomicrobiology and biogeochemistry. Trends Microbiol 18:413–422. doi: 10.1016/j.tim.2010.06.006 PubMedCrossRefGoogle Scholar
  43. Ferguson AD, Hofmann E, Coulton JW, Diederichs K, Welte W (1998) Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. Science 282:2215–2220. doi: 10.1126/science.282.5397.2215 PubMedCrossRefGoogle Scholar
  44. Ferguson AD, Braun V, Fiedler HP, Coulton JW, Diederichs K, Welte W (2000) Crystal structure of the antibiotic albomycin in complex with the outer membrane transporter FhuA. Protein Sci 9:956–963PubMedPubMedCentralCrossRefGoogle Scholar
  45. Ferguson AD et al (2001) Active transport of an antibiotic rifamycin derivative by the outer-membrane protein FhuA. Structure 9:707–716. doi: 10.1016/s0969-2126(01)00631-1 PubMedCrossRefGoogle Scholar
  46. Ferguson AD, Chakraborty R, Smith BS, Esser L, van der Helm D, Deisenhofer J (2002) Structural basis of gating by the outer membrane transporter FecA. Science 295:1715–1719. doi: 10.1126/science.1067313 PubMedCrossRefGoogle Scholar
  47. Figueroa LOS, Schwarz BH, Richards AM (2012) Characterization of New Siderophores Produced by a Soda Lake Isolate. Abstr Gen Meet Amer Soc Microbiol 112:404Google Scholar
  48. Figueroa LOS, Schwarz B, Richards AM (2015) Structural characterization of amphiphilic siderophores produced by a soda lake isolate, Halomonas sp SL01, reveals cysteine-, phenylalanine- and proline-containing head groups. Extremophiles 19:1183–1192. doi: 10.1007/s00792-015-0790-x PubMedCrossRefGoogle Scholar
  49. Fineran PC, Slater H, Everson L, Hughes K, Salmond GPC (2005) Biosynthesis of tripyrrole and beta-lactam secondary metabolites in Serratia: integration of quorum sensing with multiple new regulatory components in the control of prodigiosin and carbapenem antibiotic production. Mol Microbiol 56:1495–1517. doi: 10.1111/j.1365-2958.2005.04660.x PubMedCrossRefGoogle Scholar
  50. Fisher CR, Davies NMLL, Wyckoff EE, Feng Z, Oaks EV, Payne SM (2009) Genetics and virulence association of the shigella flexneri sit iron transport system. Infect Immun 77:1992–1999. doi: 10.1128/iai.00064-09 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Fleming EJ, Davis RE, McAllister SM, Chan CS, Moyer CL, Tebo BM, Emerson D (2013) Hidden in plain sight: discovery of sheath-forming, iron-oxidizing Zetaproteobacteria at Loihi Seamount, Hawaii, USA. FEMS Microbiol Ecol 85:116–127. doi: 10.1111/1574-6941.12104 PubMedCrossRefGoogle Scholar
  52. Friedmann EI, Ocampo R (1976) Endolithic blue-green-algae in dry valleys—primary producers in Antarctic desert ecosystem. Science 193:1247–1249. doi: 10.1126/science.193.4259.1247 PubMedCrossRefGoogle Scholar
  53. Friedmann EI, McKay CP, Nienow JA (1987) The cryptoendolithic microbial environment in the Ross Desert of Antarctica—satellite-transmitted continuos nanoclimate data, 1984 to 1986. Polar Biol 7:273–287. doi: 10.1007/bf00443945 PubMedCrossRefGoogle Scholar
  54. Fujita MJ, Sakai R (2014) Production of avaroferrin and putrebactin by heterologous expression of a deep-sea metagenomic DNA. Mar Drugs 12:4799–4809. doi: 10.3390/md12094799 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Gascoyne DJ, Connor JA, Bull AT (1991a) Capacity of siderophore—producing alkalophilic bacteria to accumulate iron, gallium and aluminum. Appl Microbiol Biotechnol 36:136–141CrossRefGoogle Scholar
  56. Gascoyne DJ, Connor JA, Bull AT (1991b) Isolation of bacteria producing siderophores under alkaline conditions. Appl Microbiol Biotechnol 36:130–135CrossRefGoogle Scholar
  57. Gauglitz J, Butler A (2013) Amino acid variability in the peptide composition of a suite of amphiphilic peptide siderophores from an open ocean Vibrio species. J Biol Inorg Chem 18:489–497. doi: 10.1007/s00775-013-0995-3 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Gauglitz JM, Zhou HJ, Butler A (2012) A suite of citrate-derived siderophores from a marine Vibrio species isolated following the Deepwater Horizon oil spill. J Inor Biochem 107:90–95. doi: 10.1016/j.jinorgbio.2011.10.013 CrossRefGoogle Scholar
  59. Gehring AM, Bradley KA, Walsh CT (1997) Enterobactin biosynthesis in Escherichia coli: isochorismate lyase (EntB) is a bifunctional enzyme that is phosphopantetheinylated by EntD and then acylated by EntE using ATP and 2,3-dihydroxybenzoate. Biochem 36:8495–8503. doi: 10.1021/bi970453p CrossRefGoogle Scholar
  60. Georlette D, Damien B, Blaise V, Depiereux E, Uversky VN, Gerday C, Feller G (2003) Structural and functional adaptations to extreme temperatures in psychrophilic, mesophilic, and thermophilic DNA ligases. J Biol Chem 278:37015–37023. doi: 10.1074/jbc.M305142200 PubMedCrossRefGoogle Scholar
  61. Ghozlan H, Deif H, Abu Kandil R, Sabry S (2006) Biodiversity of moderately halophilic bacteria in hypersaline habitats in Egypt. J Gen Appl Microbiol 52:63–72. doi: 10.2323/jgam.52.63 PubMedCrossRefGoogle Scholar
  62. Gledhill M, McCormack P, Ussher S, Achterberg E, Mantoura R, Worsfold P (2004) Production of siderophore type chelates by mixed bacterioplankton populations in nutrient enriched seawater incubations. Mar Chem 88:75–83. doi: 10.1016/j.marchem.2004.03.003 CrossRefGoogle Scholar
  63. Goswami D, Dhandhukia P, Patel P, Thakker JN (2014a) Screening of PGPR from saline desert of Kutch: growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiol Res 169:66–75. doi: 10.1016/j.micres.2013.07.004 PubMedCrossRefGoogle Scholar
  64. Goswami D, Pithwa S, Dhandhukia P, Thakker JN (2014b) Delineating kocuria turfanensis 2M4 as a credible PGPR: a novel IAA-producing bacteria isolated from saline desert. J Plant Interact 9:566–576. doi: 10.1080/17429145.2013.871650 CrossRefGoogle Scholar
  65. Gounder K et al (2011) Sequence of the hyperplastic genome of the naturally competent thermus scotoductus SA-01. BMC Genom 12:14. doi: 10.1186/1471-2164-12-577 CrossRefGoogle Scholar
  66. Guerry P, PerezCasal J, Yao RJ, McVeigh A, Trust TJ (1997) A genetic locus involved in iron utilization unique to some Campylobacter strains. J Bacteriol 179:3997–4002PubMedPubMedCentralGoogle Scholar
  67. Handley KM, Lloyd JR (2013) Biogeochemical implications of the ubiquitous colonization of marine habitats and redox gradients by Marinobacter species. Front Microbiol 4:10. doi: 10.3389/fmicb.2013.00136 CrossRefGoogle Scholar
  68. Hantke K (1987) Ferrous iron transport mutants in escherichia-coli-K12. FEMS Microbiol Lett 44:53–57. doi: 10.1111/j.1574-6968.1987.tb02241.x CrossRefGoogle Scholar
  69. Hantke K (2004) Ferrous iron transport. In: Crosa JH, Mey AR, Payne SM (eds) Iron transport in bacteria, vol 1. ASM Press, Washington, DC, pp 178–184CrossRefGoogle Scholar
  70. Harris W, Amin S, Kupper F, Green D, Carrano C (2007) Borate binding to siderophores: Structure and stability. J Am Chem Soc 129:12263–12271. doi: 10.1021/ja073788v PubMedCrossRefGoogle Scholar
  71. Hedlund BP, Dodsworth JA, Cole JK, Panosyan HH (2013) An integrated study reveals diverse methanogens, Thaumarchaeota, and yet-uncultivated archaeal lineages in Armenian hot springs Anton Van Leeuwenhoek. Anton Leeuw Int J G 104:71–82. doi: 10.1007/s10482-013-9927-z CrossRefGoogle Scholar
  72. Homann V, Sandy M, Tincu J, Templeton A, Tebo B, Butler A (2009) Loihichelins A-F, a suite of amphiphilic siderophores produced by the marine bacterium halomonas LOB-5. J Nat Prod 72:884–888. doi: 10.1021/np800640h PubMedPubMedCentralCrossRefGoogle Scholar
  73. Hopkinson B, Morel F (2009) The role of siderophores in iron acquisition by photosynthetic marine microorganisms. Biometals 22:659–669. doi: 10.1007/s10534-009-9235-2 PubMedCrossRefGoogle Scholar
  74. Horowitz NH, Hubbard JS, Cameron RE (1972) Microbiology of dry Valleys of Antarctica. Science 176:242. doi: 10.1126/science.176.4032.242 PubMedCrossRefGoogle Scholar
  75. Huidrom P, Rajkumar B, Sharma GD (2011) Screening of native bacteria isolated from tea garden soil of South Assam for their abiotic stress tolerance. J Pure Appl Microbiol 5:349–353Google Scholar
  76. Ito Y, Butler A (2005) Structure of synechobactins, new siderophores of the marine cyanobacterium Synechococcus sp PCC 7002. Limnol Oceanogr 50:1918–1923CrossRefGoogle Scholar
  77. Jarrell KF et al. (2011) Archaeal surface appendages: their function and the critical role of N-linked glycosylation in their assembly. In: Conference on instruments, methods, and missions for astrobiology XIV, SPIE, San Diego, CA, Aug 23–25 2011. doi:81520o10.1117/12.892939Google Scholar
  78. Jorgensen SL, Thorseth IH, Pedersen RB, Baumberger T, Schleper C (2013) Quantitative and phylogenetic study of the Deep Sea Archaeal Group in sediments of the Arctic mid-ocean spreading ridge. Front Microbiol 4:299. doi: 10.3389/fmicb.2013.00299 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Kadirvel M, Fanimarvasti F, Forbes S, McBain A, Gardiner JM, Brown GD, Freeman S (2014) Inhibition of quorum sensing and biofilm formation in Vibrio harveyi by 4-fluoro-DPD: a novel potent inhibitor of Al-2 signalling. Chem Commun 50:5000–5002. doi: 10.1039/c3cc49678c CrossRefGoogle Scholar
  80. Kalinowski BE, Johnsson A, Arlinger J, Pedersen K, Odeggrd-Jensen A, Edberg F (2006) Microbial mobilization of uranium from shale mine waste. Geomicrobiol J 23:157–164. doi: 10.1080/01490450600599197 CrossRefGoogle Scholar
  81. Karagoz K, Ates F, Karagoz H, Kotan R, Cakmakci R (2012) Characterization of plant growth-promoting traits of bacteria isolated from the rhizosphere of grapevine grown in alkaline and acidic soils. Eur J Soil Biol 50:144–150. doi: 10.1016/j.ejsobi.2012.01.007 CrossRefGoogle Scholar
  82. Kaye J, Sylvan J, Edwards K, Baross J (2011) Halomonas and Marinobacter ecotypes from hydrothermal vent, subseafloor and deep-sea environments. FEMS Microbiol Ecol 75:123–133. doi: 10.1111/j.1574-6941.2010.00984.x PubMedCrossRefGoogle Scholar
  83. Kodani S et al (2013) Structure and biosynthesis of scabichelin, a novel tris-hydroxamate siderophore produced by the plant pathogen Streptomyces scabies 87.22. Org Biomol Chem 11:4686–4694. doi: 10.1039/c3ob40536b PubMedCrossRefGoogle Scholar
  84. Kogej T, Gorbushina AA, Gunde-Cimerman N (2006) Hypersaline conditions induce changes in cell-wall melanization and colony structure in a halophilic and a xerophilic black yeast species of the genus Trimmatostroma. Mycol Res 110:713–724. doi: 10.1016/j.mycres.2006.01.014 PubMedCrossRefGoogle Scholar
  85. Konetschny-Rapp S, Jung G, Raymond KN, Meiwes J, Zahner H (1992) Solution Thermodynamics of the Ferric Complexes of New Desferrioxamine Siderophores Obtained by Directed Fermentation. J Am Chem Soc 114:2224–2230. doi: 10.1021/ja00032a043 CrossRefGoogle Scholar
  86. Kozubal MA et al (2013) Geoarchaeota: a new candidate phylum in the Archaea from high-temperature acidic iron mats in Yellowstone National Park. ISME J 7:622–634. doi: 10.1038/ismej.2012.132 PubMedCrossRefGoogle Scholar
  87. Krewulak KD, Vogel HJ (2008) Structural biology of bacterial iron uptake. Biochim Biophys Acta 1778:1781–1804. doi: 10.1016/j.bbamem.2007.07.026 PubMedCrossRefGoogle Scholar
  88. Kube M et al (2013) Genome sequence and functional genomic analysis of the oil-degrading bacterium Oleispira Antarctica. Nature Commun 4:11. doi: 10.1038/ncomms3156 CrossRefGoogle Scholar
  89. Kusel K, Dorsch T, Acker G, Stackebrandt E (1999) Microbial reduction of Fe(III) in acidic sediments: isolation of Acidiphilium cryptum JF-5 capable of coupling the reduction of Fe(III) to the oxidation of glucose. Appl Environ Microbiol 65:3633–3640PubMedPubMedCentralGoogle Scholar
  90. Lewenza S, Conway B, Greenberg EP, Sokol PA (1999) Quorum sensing in Burkholderia cepacia: identification of the LuxRI homologs CepRI. J Bacteriol 181:748–756PubMedPubMedCentralGoogle Scholar
  91. Li XY, Hu Y, Gong J, Zhang LS, Wang GJ (2013) Comparative genome characterization of Achromobacter members reveals potential genetic determinants facilitating the adaptation to a pathogenic lifestyle. Appl Microbiol Biotechnol 97:6413–6425. doi: 10.1007/s00253-013-5018-3 PubMedCrossRefGoogle Scholar
  92. Liu SV, Zhou JZ, Zhang CL, Cole DR, GajdarziskaJosifovska M, Phelps TJ (1997) Thermophilic Fe(III)-reducing bacteria from the deep subsurface: the evolutionary implications. Science 277:1106–1109. doi: 10.1126/science.277.5329.1106 CrossRefGoogle Scholar
  93. Liu N, Shang F, Xi LJ, Huang Y (2013) Tetroazolemycins A and B, two new oxazole-thiazole siderophores from deep-sea streptomyces olivaceus FXJ8.012. Mar Drugs 11:1524–1533. doi: 10.3390/md11051524 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Lorenzo Vd, Perez-Martin J, Escolar L, Pesole G, Bertoni G (2004) Mode of binding of the fur protein to target DNA: negative regulation of iron-controlled gene expression. In: Crosa JH, Mey AR, Payne SM (eds) Iron transport in bacteria, vol 1. ASM Press, Washington, DC, pp 185–196CrossRefGoogle Scholar
  95. Luo XZ, Wu SX, Liang YQ (2002) Vesicle formation induced by metal ions from micelle-forming sodium hexadecylimino diacetate in dilute aqueous. Chem Commun 5:492–493. doi: 10.1039/b110797f CrossRefGoogle Scholar
  96. Luque-Almagro VM, Blasco R, Huertas MJ, Martinez-Luque M, Moreno-Vivian C, Castillo F, Roldan MD (2005a) Alkaline cyanide biodegradation by Pseudomonas pseudoalcaligenes CECT5344. Biochem Soc Transact 33:168–169CrossRefGoogle Scholar
  97. Luque-Almagro VM et al (2005b) Bacterial degradation of cyanide and its metal complexes under alkaline conditions. Appl Environ Microbiol 71:940–947. doi: 10.1128/aem.71.2.940-947.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Luque-Almagro VM, Blasco R, Martinez-Luque M, Moreno-Vivian C, Castillo F, Roldan MD (2011) Bacterial cyanide degradation is under review: Pseudomonas pseudoalcaligenes CECT5344, a case of an alkaliphilic cyanotroph. Biochem Soc Trans 39:269–274. doi: 10.1042/bst0390269 PubMedCrossRefGoogle Scholar
  99. Luther GW, Wu JF (1997) What controls dissolved iron concentrations in the world ocean? A comment. Mar Chem 57:173–179. doi: 10.1016/s0304-4203(97)00046-7 CrossRefGoogle Scholar
  100. Machuca A, Aoyama H, Duran N (1999) Isolation and partial characterization of an extracellular low-molecular mass component with high phenoloxidase activity from Thermoascus aurantiacus. Biochem Biophys Res Commun 256:20–26. doi: 10.1006/bbrc.1998.9927 PubMedCrossRefGoogle Scholar
  101. Malviya N, Yandigeri MS, Yadav AK, Solanki MK, Arora DK (2014) Isolation and characterization of novel alkali-halophilic actinomycetes from the Chilika brackish water lake. India Ann Microbiol 64:1829–1838. doi: 10.1007/s13213-014-0831-1 CrossRefGoogle Scholar
  102. Martin J, Ito Y, Homann V, Haygood M, Butler A (2006) Structure and membrane affinity of new amphiphilic siderophores produced by Ochrobactrum sp SP18. J Biol Inorg Chem 11:633–641. doi: 10.1007/s00775-006-0112-y PubMedCrossRefGoogle Scholar
  103. Martinez J, Butler A (2007) Marine amphiphilic siderophores: marinobactin structure, uptake, and microbial partitioning. J Inorg Biochem 101:1692–1698. doi: 10.1016/j.jinorgbio.2007.07.007 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Martinez J, Zhang G, Holt P, Jung H, Carrano C, Haygood M, Butler A (2000) Self-assembling amphiphilic siderophores from marine bacteria. Science 287:1245–1247. doi: 10.1126/science.287.5456.1245 PubMedCrossRefGoogle Scholar
  105. Martinez JS, Haygood MG, Butler A (2001) Identification of a natural desferrioxamine siderophore produced by a marine bacterium. Limnol Oceanogr 46:420–424CrossRefGoogle Scholar
  106. Martinez J, Carter-Franklin J, Mann E, Martin J, Haygood M, Butler A (2003) Structure and membrane affinity of a suite of amphiphilic siderophores produced by a marine bacterium. Proc Natl Acad Sci USA 100:3754–3759. doi: 10.1073/pnas.0637444100 PubMedPubMedCentralCrossRefGoogle Scholar
  107. McMillan DGG et al (2010) Acquisition of iron by alkaliphilic bacillus species. Appl Environ Microbiol 76:6955–6961. doi: 10.1128/aem.01393-10 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Meiwes J, Fiedler HP, Haag H, Zahner H, Konetschny-Rapp S, Jung G (1990) Isolation and characterization of staphyloferrin A, a compound with siderophore activity from Staphylococcus hyicus DSM 20459. FEMS Microbiol Lett 55:201–205PubMedCrossRefGoogle Scholar
  109. Mishra PK, Mishra S, Selvakumar G, Bisht SC, Bisht JK, Kundu S, Gupta HS (2008) Characterisation of a psychrotolerant plant growth promoting Pseudomonas sp strain PGERs17 (MTCC 9000) isolated from North Western Indian Himalayas. Ann Microbiol 58:561–568CrossRefGoogle Scholar
  110. Neilands JB (1995) Siderophores—structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726PubMedCrossRefGoogle Scholar
  111. Nogi Y, Kato C, Horikoshi K (1998) Moritella japonica sp. nov., a novel barophilic bacterium isolated from a Japan Trench sediment. J Gen Appl Microbiol 44:289–295. doi: 10.2323/jgam.44.289 PubMedCrossRefGoogle Scholar
  112. Olsson-Francis K, de la Torre R, Cockell CS (2010) Isolation of Novel Extreme-Tolerant Cyanobacteria from a Rock-Dwelling Microbial Community by Using Exposure to Low Earth Orbit. Appl Environ Microbiol 76:2115–2121. doi: 10.1128/aem.02547-09 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Osorio H, Martinez V, Nieto PA, Holmes DS, Quatrini R (2008) Microbial iron management mechanisms in extremely acidic environments: comparative genomics evidence for diversity and versatility. BMC Microbiol 8:1. doi: 10.1186/1471-2180-8-203 CrossRefGoogle Scholar
  114. Owen T, Pynn R, Martinez J, Butler A (2005) Micelle-to-vesicle transition of an iron-chelating microbial surfactant, marinobactin E. Langmuir 21:12109–12114. doi: 10.1021/la0519352 PubMedCrossRefGoogle Scholar
  115. Owen T, Pynn R, Hammouda B, Butler A (2007) Metal-dependent self-assembly of a microbial surfactant. Langmuir 23:9393–9400. doi: 10.1021/la700671p PubMedCrossRefGoogle Scholar
  116. Owen T, Webb S, Butler A (2008) XAS study of a metal-induced phase transition by a microbial surfactant. Langmuir 24:4999–5002. doi: 10.1021/la703833v PubMedPubMedCentralCrossRefGoogle Scholar
  117. Packiavathy IASV, Sasikumar P, Pandian SK, Veera Ravi A (2013) Prevention of quorum-sensing-mediated biofilm development and virulence factors production in Vibrio spp. by curcumin. Appl Microbiol Biotechnol 97:10177–10187. doi: 10.1007/s00253-013-4704-5 PubMedCrossRefGoogle Scholar
  118. Pan HQ, Hu JC (2015) Draft genome sequence of the novel strain Pseudomonas sp 10B238 with potential ability to produce antibiotics from deep-sea sediment. Mar Genom 23:55–57. doi: 10.1016/j.margen.2015.05.003 CrossRefGoogle Scholar
  119. Pandit AS et al (2015) A snapshot of microbial communities from the Kutch: one of the largest salt deserts in the World. Extremophiles 19:973–987. doi: 10.1007/s00792-015-0772-z PubMedCrossRefGoogle Scholar
  120. Pettit RK (2011) Culturability and secondary metabolite diversity of extreme microbes: expanding contribution of deep sea and deep-sea vent microbes to natural product discovery. Mar Biotechnol 13:1–11. doi: 10.1007/s10126-010-9294-y PubMedCrossRefGoogle Scholar
  121. Picard A, Testemale D, Wagenknecht L, Hazael R, Daniel I (2014) Iron reduction by the deep-sea bacterium Shewanella profunda LT13a under subsurface pressure and temperature conditions. Front Microbiol 5:796. doi: 10.3389/fmicb.2014.00796 PubMedGoogle Scholar
  122. Pick U (2004) The respiratory inhibitor antimycin A specifically binds Fe(III) ions and mediates utilization of iron by the halotolerant alga Dunaliella salina (Chlorophyta). Biometals 17:79–86. doi: 10.1023/a:1024480720962 PubMedCrossRefGoogle Scholar
  123. Potrykus J, Jonna VR, Dopson M (2011) Iron homeostasis and responses to iron limitation in extreme acidophiles from the Ferroplasma genus. Proteomics 11:52–63. doi: 10.1002/pmic.201000193 PubMedCrossRefGoogle Scholar
  124. Quatrini R, Lefimil C, Holmes DS, Jedlicki E (2005) The ferric iron uptake regulator (Fur) from the extreme acidophile Acidithiobacillus ferrooxidans. Microbiol 151:2005–2015. doi: 10.1099/mic.0.27581-0 CrossRefGoogle Scholar
  125. Quatrini R, Lefimil C, Veloso FA, Pedroso I, Holmes DS, Jedlicki E (2007) Bioinformatic prediction and experimental verification of Fur-regulated genes in the extreme acidophile Acidithiobacillus ferrooxidans. Nucleic Acids Res 35:2153–2166. doi: 10.1093/nar/gkm068 PubMedPubMedCentralCrossRefGoogle Scholar
  126. Raina S, De Vizio D, Palonen EK, Odell M, Brandt AM, Soini JT, Keshavarz T (2012) Is quorum sensing involved in lovastatin production in the filamentous fungus Aspergillus terreus? Process Biochem 47:843–852. doi: 10.1016/j.procbio.2012.02.021 CrossRefGoogle Scholar
  127. Ramadoss D, Lakkineni VK, Bose P, Ali S, Annapurna K (2013) Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. Springer Plus 2:7. doi: 10.1186/2193-1801-2-6 CrossRefGoogle Scholar
  128. Ren GM, Jin Y, Zhang CM, Gu HD, Qu JJ (2015) Characteristics of Bacillus sp PZ-1 and its biosorption to Pb(II). Ecotoxicol Environ Saf 117:141–148. doi: 10.1016/j.ecoenv.2015.03.033 PubMedCrossRefGoogle Scholar
  129. Richards AM, Peyton BM, Apel WA (2006) Characterization of siderophores produced by halophilic microorganisms isolated from Soap Lake in Washington State. Abstr Gen Meet Am Soc Microbiol 106:387Google Scholar
  130. Richards AM, Peyton BM, Gerlach R, Apell WA (2007) Characterization of siderophores produced by halo-alkaliphiles isolated from terrestrial environments. Abstr Gen Meet Am Soc Microbiol 107:565Google Scholar
  131. Rossello-Mora RA et al (1995) Isolation and taxonomic characterization of a halotolerant, facultatively iron-reducing bacterium system. Appl Microbiol 17:569–573CrossRefGoogle Scholar
  132. Sahay H, Mahfooz S, Singh AK, Singh S, Kaushik R, Saxena AK, Arora DK (2012) Exploration and characterization of agriculturally and industrially important haloalkaliphilic bacteria from environmental samples of hypersaline Sambhar lake, India. World J Microbiol Biotechnol 28:3207–3217. doi: 10.1007/s11274-012-1131-1 PubMedCrossRefGoogle Scholar
  133. Sandy M, Butler A (2009) Microbial iron acquisition: marine and terrestrial siderophores. Chem Rev 109:4580–4595. doi: 10.1021/cr9002787 PubMedPubMedCentralCrossRefGoogle Scholar
  134. Sarethy IP, Saxena Y, Kapoor A, Sharma M, Sharma SK, Gupta V, Gupta S (2011) Alkaliphilic bacteria: applications in industrial biotechnology. J Ind Microbiol Biotechnol 38:769–790. doi: 10.1007/s10295-011-0968-x PubMedCrossRefGoogle Scholar
  135. Sarkar A, Kazy SK, Sar P (2013) Characterization of arsenic resistant bacteria from arsenic rich groundwater of West Bengal, India. Ecotoxicology 22:363–376. doi: 10.1007/s10646-012-1031-z PubMedCrossRefGoogle Scholar
  136. Scandurra R, Consalvi V, Chiaraluce R, Politi L, Engel PC (1998) Protein thermostability in extremophiles. Biochimie 80:933–941. doi: 10.1016/s0300-9084(00)88890-2 PubMedCrossRefGoogle Scholar
  137. Serrano Figueroa LO (2015) A study on amphiphilic siderophore detection, structure elucidation and their iron-mediated vesicle self-assembly. Montana State University, BozemanGoogle Scholar
  138. Seyedsayamdost MR, Traxler MF, Zheng S-L, Kolter R, Clardy J (2011) Structure and biosynthesis of amychelin an unusual mixed-ligand siderophore from Amycolatopsis sp. AA4. J Am Chem Soc 133:11434–11437. doi: 10.1021/ja203577e PubMedPubMedCentralCrossRefGoogle Scholar
  139. Siebert J, Hirsch P, Hoffmann B, Gliesche CG, Peissl K, Jendrach M (1996) Cryptoendolithic microorganisms from Antarctic sandstone of linnaeus terrace (Asgard range): diversity, properties and interactions. Biodiver Conserv 5:1337–1363. doi: 10.1007/bf00051982 CrossRefGoogle Scholar
  140. Soe CZ, Codd R (2014) Unsaturated macrocyclic dihydroxamic acid siderophores produced by shewanella putrefaciens using precursor-directed biosynthesis. ACS Chem Biol 9:945–956. doi: 10.1021/cb400901j PubMedCrossRefGoogle Scholar
  141. Stintzi A, Evans K, Meyer JM, Poole K (1998) Quorum-sensing and siderophore biosynthesis in Pseudomonas aeruginosa: lasR/lasI mutants exhibit reduced pyoverdine biosynthesis. FEMS Microbiol Lett 166:341–345. doi: 10.1111/j.1574-6968.1998.tb13910.x PubMedCrossRefGoogle Scholar
  142. Sudek LA, Templeton AS, Tebo BM, Staudigel H (2009) Microbial ecology of Fe (hydr)oxide mats and Basaltic rock from Vailulu’u seamount, American Samoa. Geomicrobiol J 26:581–596. doi: 10.1080/01490450903263400 CrossRefGoogle Scholar
  143. Sunagawa S et al (2015) Structure and function of the global ocean microbiome. Science 348:1261359. doi: 10.1126/science.1261359 PubMedCrossRefGoogle Scholar
  144. Tal-Gan Y, Stacy DM, Foegen MK, Koenig DW, Blackwell HE (2013) Highly potent inhibitors of quorum sensing in staphylococcus aureus revealed through a systematic synthetic study of the group-iii autoinducing peptide. J Am Chem Soc 135:7869–7882. doi: 10.1021/ja3112115 PubMedCrossRefGoogle Scholar
  145. Tang YJ et al (2009) Analysis of metabolic pathways and fluxes in a newly discovered thermophilic and ethanol-tolerant geobacillus strain. Biotechnol Bioeng 102:1377–1386. doi: 10.1002/bit.22181 PubMedCrossRefGoogle Scholar
  146. Temirov YV, Esikova TZ, Kashparov IA, Balashova TA, Vinokurov LM, Alakhov YB (2003) A catecholic siderophore produced by the thermoresistant Bacillus licheniformis VK21 strain. Russ J Bioorg Chem 29:542–549. doi: 10.1023/B:RUBI.0000008894.80972.2e CrossRefGoogle Scholar
  147. Tipre S, Pindi PK, Sharma S (2015) Biotechnological potential of a Halobacterium of family Bacillaceae Indian. J Biotechnol 14:65–71CrossRefGoogle Scholar
  148. Tsolis RM, Baumler AJ, Heffron F, Stojiljkovic I (1996) Contribution of TonB- and Feo-mediated iron uptake to growth of Salmonella typhimurium in the mouse. Infect Immun 64:4549–4556PubMedPubMedCentralGoogle Scholar
  149. Vasavi HS, Arun AB, Rekha P-D (2014) Anti-quorum sensing activity of Psidium guajava L. flavonoids against Chromobacterium violaceum and Pseudomonas aeruginosa PAO1. Microbiol Immunol 58:286–293. doi: 10.1111/1348-0421.12150 PubMedCrossRefGoogle Scholar
  150. Verma R, Naosekpam AS, Kumar S, Prasad R, Shanmugam V (2007) Influence of soil reaction on diversity and antifungal activity of fluorescent pseudomonads in crop rhizospheres. Bioresour Technol 98:1346–1352. doi: 10.1016/j.biortech.2006.05.030 PubMedCrossRefGoogle Scholar
  151. Vishal VK, Manuel VBR (2015) Effect of ACC-deaminase producing Bacillus cereus brm on the growth of Vigna radiata (Mung beans) under salinity stress. Res J Biotechnol 10:122–130Google Scholar
  152. Vraspir JM, Holt PD, Butler A (2011) Identification of new members within suites of amphiphilic marine siderophores. Biometals 24:85–92. doi: 10.1007/s10534-010-9378-1 PubMedCrossRefGoogle Scholar
  153. Wang F et al (2008) Environmental adaptation: genomic analysis of the piezotolerant and psychrotolerant deep-sea iron reducing bacterium shewanella piezotolerans WP3. PLoS One 3:e1937. doi: 10.1371/journal.pone.0001937 PubMedPubMedCentralCrossRefGoogle Scholar
  154. Weaver EA, Wyckoff EE, Mey AR, Morrison R, Payne SM (2013) FeoA and FeoC are essential components of the vibrio cholerae ferrous iron uptake system, and FeoC interacts with FeoB. J Bacteriol 195:4826–4835. doi: 10.1128/jb.00738-13 PubMedPubMedCentralCrossRefGoogle Scholar
  155. Wilhelm SW, MacAuley K, Trick CG (1998) Evidence for the importance of catechol-type siderophores in the iron-limited growth of a cyanobacterium. Limnol Oceanogr 43:992–997CrossRefGoogle Scholar
  156. Wirsen CO, Molyneaux SJ (1999) A study of deep-sea natural microbial populations and barophilic pure cultures using a high-pressure chemostat. Appl Environ Microbiol 65:5314–5321PubMedPubMedCentralGoogle Scholar
  157. Woo S-M, Kim S-D (2008) Structural identification of siderophore(AH18) from bacillus subtilis AH18, a biocontrol agent of phytophthora blight disease in red-pepper Korean. J Microbiol Biotechnol 36:326–335Google Scholar
  158. Wood AP, Kelly DP (1991) Isolation and characterization of thiobacillus-halophilus Sp-nov, A sulfur-oxidizing autotrophic eubacterium from a Western Australian Hypersaline Lake. Arch Microbiol 156:277–280. doi: 10.1007/bf00262998 CrossRefGoogle Scholar
  159. Wu LL, Brucker RP, Beard BL, Roden EE, Johnson CM (2013a) Iron isotope characteristics of hot springs at chocolate pots, Yellowstone National Park. Astrobiology 13:1091–1101. doi: 10.1089/ast.2013.0996 PubMedCrossRefGoogle Scholar
  160. Wu WF, Wang FP, Li JH, Yang XW, Xiao X, Pan YX (2013b) Iron reduction and mineralization of deep-sea iron reducing bacterium Shewanella piezotolerans WP3 at elevated hydrostatic pressures. Geobiology 11:593–601. doi: 10.1111/gbi.12061 PubMedGoogle Scholar
  161. Xu G, Martinez J, Groves J, Butler A (2002) Membrane affinity of the amphiphilic marinobactin siderophores. J Am Chem Soc 124:13408–13415. doi: 10.1021/ja026768w PubMedCrossRefGoogle Scholar
  162. Yadav S, Kaushik R, Saxena AK, Arora DK (2011) Diversity and phylogeny of plant growth-promoting bacilli from moderately acidic soil. J Basic Microbiol 51:98–106. doi: 10.1002/jobm.201000098 PubMedCrossRefGoogle Scholar
  163. Yadav AN, Sachan SG, Verma P, Saxena AK (2015a) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119:683–693. doi: 10.1016/j.jbiosc.2014.11.006 PubMedCrossRefGoogle Scholar
  164. Yadav AN, Sachan SG, Verma P, Tyagi SP, Kaushik R, Saxena AK (2015b) Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J Microbiol Biotechnol 31:95–108. doi: 10.1007/s11274-014-1768-z PubMedCrossRefGoogle Scholar
  165. Ye Q, Roh Y, Carroll SL, Blair B, Zhou JZ, Zhang CL, Fields MW (2004) Alkaline anaerobic respiration: isolation and characterization of a novel alkaliphilic and metal-reducing bacterium. Appl Environ Microbiol 70:5595–5602. doi: 10.1128/aem.70.9.5595-5602.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  166. Yue WW, Grizot S, Buchanan SK (2003) Structural evidence for iron-free citrate and ferric citrate binding to the TonB-dependent outer membrane transporter FecA. J Mol Biol 332:353–368. doi: 10.1016/s0022-2836(03)00855-6 PubMedCrossRefGoogle Scholar
  167. Zane HK, Butler A (2013) Isolation, structure elucidation, and iron-binding properties of lystabactins, siderophores isolated from a marine Pseudoalteromonas sp. J Nat Prod 76:648–654. doi: 10.1021/np3008655 PubMedCrossRefGoogle Scholar
  168. Zane HK, Naka H, Rosconi F, Sandy M, Haygood MG, Butler A (2014) Biosynthesis of amphi-enterobactin siderophores by Vibrio harveyi BAA-1116: identification of a bifunctional nonribosomal peptide synthetase condensation domain. J Am Chem Soc 136:5615–5618. doi: 10.1021/ja5019942 PubMedCrossRefGoogle Scholar
  169. Zhang CL, Stapleton RD, Zhou JZ, Palumbo AV, Phelps TJ (1999) Iron reduction by psychotrophic enrichment cultures. FEMS Microbiol Ecol 30:367–371. doi: 10.1111/j.1574-6941.1999.tb00664.x PubMedCrossRefGoogle Scholar
  170. Zhang J, Dong HL, Liu D, Agrawal A (2013) Microbial reduction of Fe(III) in smectite minerals by thermophilic methanogen Methanothermobacter thermautotrophicus. Geochim Cosmochim Acta 106:203–215. doi: 10.1016/j.gca.2012.12.031 CrossRefGoogle Scholar
  171. Zhou J, Liu S, Xia B, Zhang C, Palumbo AV, Phelps TJ (2001) Molecular characterization and diversity of thermophilic iron-reducing enrichment cultures from deep subsurface environments. J Appl Microbiol 90:96–105. doi: 10.1046/j.1365-2672.2001.01192.x PubMedCrossRefGoogle Scholar
  172. Zobell CE, Morita RY (1957) Barophilic bacteria in some deep sea sediments. J Bacteriol 73:563–568PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Luis O. De Serrano
    • 1
    • 4
  • Anne K. Camper
    • 1
    • 2
    • 4
  • Abigail M. Richards
    • 3
    • 4
  1. 1.Department of Microbiology & ImmunologyMontana State UniversityBozemanUSA
  2. 2.Department of Civil & Environmental EngineeringMontana State UniversityBozemanUSA
  3. 3.Department of Chemical & Biological EngineeringMontana State UniversityBozemanUSA
  4. 4.Center for Biofilm EngineeringMontana State UniversityBozemanUSA

Personalised recommendations