Skip to main content

Advertisement

Log in

An overview of siderophores for iron acquisition in microorganisms living in the extreme

BioMetals Aims and scope Submit manuscript

Abstract

Siderophores are iron-chelating molecules produced by microbes when intracellular iron concentrations are low. Low iron triggers a cascade of gene activation, allowing the cell to survive due to the synthesis of important proteins involved in siderophore synthesis and transport. Generally, siderophores are classified by their functional groups as catecholates, hydroxamates and hydroxycarboxylates. Although other chemical structural modifications and functional groups can be found. The functional groups participate in the iron-chelating process when the ferri-siderophore complex is formed. Classified as acidophiles, alkaliphiles, halophiles, thermophiles, psychrophiles, piezophiles, extremophiles have particular iron requirements depending on the environmental conditions in where they grow. Most of the work done in siderophore production by extremophiles is based in siderophore concentration and/or genomic studies determining the presence of siderophore synthesis and transport genes. Siderophores produced by extremophiles are not well known and more work needs to be done to elucidate chemical structures and their role in microorganism survival and metal cycling in extreme environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abe F (2013) Dynamic structural changes in microbial membranes in response to high hydrostatic pressure analyzed using time-resolved fluorescence anisotropy measurement. Biophys Chem 183:3–8. doi:10.1016/j.bpc.2013.05.005

    Article  CAS  PubMed  Google Scholar 

  • Adams JB, Palmer F, Staley JT (1992) Rock weathering in deserts—mobilization and concentration of ferric iron by microorganisms. Geomicrobiol J 10:99–114

    Article  CAS  Google Scholar 

  • Amaresan N, Kumar K, Sureshbabu K, Madhuri K (2014) Plant growth-promoting potential of bacteria isolated from active volcano sites of Barren Island, India. Lett Appl Microbiol 58:130–137. doi:10.1111/lam.12165

    Article  CAS  PubMed  Google Scholar 

  • Amin S, Green D, Kupper F, Carrano C (2009) Vibrioferrin, an unusual marine siderophore: iron binding, photochemistry, and biological implications. Inorg Chem 48:11451–11458. doi:10.1021/ic9016883

    Article  CAS  PubMed  Google Scholar 

  • Anderson I et al (2011) Novel insights into the diversity of catabolic metabolism from ten haloarchaeal genomes. Plos One 6:12. doi:10.1371/journal.pone.0020237

    Google Scholar 

  • Balcazar W, Rondon J, Rengifo M, Ball MM, Melfo A, Gomez W, Yarzabal LA (2015) Bioprospecting glacial ice for plant growth promoting bacteria. Microbiol Res 177:1–7. doi:10.1016/j.micres.2015.05.001

    Article  PubMed  Google Scholar 

  • Bale SJ, Goodman K, Rochelle PA, Marchesi JR, Fry JC, Weightman AJ, Parkes RJ (1997) Desulfovibrio profundus sp nov, a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea. Int J Syst Bacteriol 47:515–521

    Article  CAS  PubMed  Google Scholar 

  • Bamforth SS (1984) Microbial distributions in Arizona Deserts and Woodlands. Soil Biol Biochem 16:133–137. doi:10.1016/0038-0717(84)90103-2

    Article  Google Scholar 

  • Barbeau K, Zhang GP, Live DH, Butler A (2002) Petrobactin, a photoreactive siderophore produced by the oil-degrading marine bacterium marinobacter hydrocarbonoclasticus. J Am Chem Soc 124:378–379. doi:10.1021/ja0119088

    Article  CAS  PubMed  Google Scholar 

  • Barbeau K, Rue EL, Trick CG, Bruland KT, Butler A (2003) Photochemical reactivity of siderophores produced by marine heterotrophic bacteria and cyanobacteria based on characteristic Fe(III) binding groups. Limnol Oceanogr 48:1069–1078

    Article  CAS  Google Scholar 

  • Bau M, Tepe N, Mohwinkel D (2013) Siderophore-promoted transfer of rare earth elements and iron from volcanic ash into glacial meltwater, river and ocean water Earth Planetary. Sci Lett 364:30–36. doi:10.1016/j.epsl.2013.01.002

    CAS  Google Scholar 

  • Beam JP, Jay ZJ, Kozubal MA, Inskeep WP (2014) Niche specialization of novel Thaumarchaeota to oxic and hypoxic acidic geothermal springs of Yellowstone National Park. ISME J 8:938–951. doi:10.1038/ismej.2013.193

    Article  CAS  PubMed  Google Scholar 

  • Bednarova L, Brandel J, d’Hardemare A, Bednar J, Serratrice G, Pierre J (2008) Vesicles to concentrate iron in low-iron media: an attempt to mimic marine siderophores. Chem-A Eur J 14:3680–3686. doi:10.1002/chem.200701644

    Article  CAS  Google Scholar 

  • Bergeron RJ, Liu ZR, McManis JS, Wiegand J (1992) Structural alterations in desferrioxamine compatible with iron clearance in animals. J Med Chem 35:4739–4744. doi:10.1021/jm00103a012

    Article  CAS  PubMed  Google Scholar 

  • Berti AD, Thomas MG (2009) Analysis of achromobactin biosynthesis by pseudomonas syringae pv. syringae B728a. J Bacteriol 191:4594–4604. doi:10.1128/jb.00457-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bister B, Bischoff D, Nicholson GJ, Valdebenito M, Schneider K, Winkelmann G, Hantke K, Sussmuth RD (2004) The structure of salmochelins: C-glucosylated enterobactins of Salmonella enterica. Biometals 17:471–481. doi:10.1023/B:BIOM.0000029432.69418.6a

    Article  CAS  PubMed  Google Scholar 

  • Blum JS, Bindi AB, Buzzelli J, Stolz JF, Oremland RS (1998) Bacillus arsenicoselenatis, sp nov, and Bacillus selenitireducens, sp nov: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 171:19–30

    Article  CAS  Google Scholar 

  • Bonnefoy V, Holmes D (2012) Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environments. Environ Microbiol 14:1597–1611. doi:10.1111/j.1462-2920.2011.02626.x

    Article  CAS  PubMed  Google Scholar 

  • Boyer E, Bergevin I, Malo D, Gros P, Cellier MFM (2002) Acquisition of Mn(II) in addition to Fe(II) is required for full virulence of Salmonella enterica serovar Typhimurium. Infect Immun 70:6032–6042. doi:10.1128/iai.70.11.6032-6042.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brito EMS et al (2014) Microbial diversity in Los Azufres geothermal field (Michoacan, Mexico) and isolation of representative sulfate and sulfur reducers. Extremophiles 18:385–398. doi:10.1007/s00792-013-0624-7

    Article  CAS  PubMed  Google Scholar 

  • Butler A, Theisen RM (2010) Iron (III)-siderophore coordination chemistry: reactivity of marine siderophores. Coordin Chem Rev 254:288–296. doi:10.1016/j.ccr.2009.09.010

    Article  CAS  Google Scholar 

  • Butler A, Martinez J, Barbeau K (2001) Reactivity of new self-assembling amphiphilic siderophores and alpha-hydroxy acid-containing siderophores from oceanic bacteria. J Inorg Biochem 86:30

    Google Scholar 

  • Buyer JS, Delorenzo V, Neilands JB (1991) Production of the siderophore aerobactin by a halophilic pseudomonad. Appl Environ Microbiol 57:2246–2250

    CAS  PubMed  PubMed Central  Google Scholar 

  • Calo D, Kaminski L, Eichler J (2010) Protein glycosylation in Archaea: Sweet and extreme. Glycobiology 20:1065–1076. doi:10.1093/glycob/cwq055

    Article  CAS  PubMed  Google Scholar 

  • Carpenter C, Payne SM (2014) Regulation of iron transport systems in enterobacteriaceae in response to oxygen and iron availability. J Inorg Biochem 133:110–117. doi:10.1016/j.jinorgbio.2014.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christiaen SEA, Matthijs N, Zhang X-H, Nelis HJ, Bossier P, Coenye T (2014) Bacteria that inhibit quorum sensing decrease biofilm formation and virulence in Pseudomonas aeruginosa PAO1. Path Dis 70:271–279. doi:10.1111/2049-632x.12124

    Article  CAS  Google Scholar 

  • Cobessi D, Celia H, Pattus F (2005a) Crystal structure at high resolution of ferric-pyochelin and its membrane receptor FptA from Pseudomonas aeruginosa. J Mol Biol 352:893–904. doi:10.1016/j.jmb.2005.08.004

    Article  CAS  PubMed  Google Scholar 

  • Cobessi D, Celia H, Wirth C, Schalk I, Pattus F (2005b) Structures of iron-siderophore outer membrane receptors from P. aeruginosa. Eur Biophys J 34:642

    Google Scholar 

  • Connell L, Barrett A, Templeton A, Staudigel H (2009) Fungal diversity associated with an active deep sea volcano: vailulu’u seamount, samoa. Geomicrobiol J 26:597–605. doi:10.1080/01490450903316174

    Article  CAS  Google Scholar 

  • Cornelis P, Matthijs S, Van Oeffelen L (2009) Iron uptake regulation in Pseudomonas aeruginosa. Biometals 22:15–22. doi:10.1007/s10534-008-9193-0

    Article  CAS  PubMed  Google Scholar 

  • Cotton JL, Tao J, Balibar CJ (2009) Identification and characterization of the staphylococcus aureus gene cluster coding for staphyloferrin A. Biochem 48:1025–1035. doi:10.1021/bi801844c

    Article  CAS  Google Scholar 

  • Crognale S, Mathe I, Cardone V, Stazi SR, Raduly B (2013) Halobacterial community analysis of Mierlei Saline Lake in Transylvania (Romania). Geomicrobiol J 30:801–812. doi:10.1080/01490451.2013.774073

    Article  CAS  Google Scholar 

  • Crosa JH, Mey AR, Payne SM (2004) Iron transport in bacteria, 1st edn. ASM Press, Washington, DC

    Book  Google Scholar 

  • Deming JW, Colwell RR (1981) Barophilic Bacteria Associated with Deep-Sea Animals. Bioscience 31:507–511. doi:10.2307/1308493

    Article  Google Scholar 

  • Dhungana S et al (2007) Purification and characterization of rhodobactin: a mixed ligand siderophore from Rhodococcus rhodochrous strain OFS. Biometals 20:853–867. doi:10.1007/s10534-006-9079-y

    Article  CAS  PubMed  Google Scholar 

  • Dimise EJ, Widboom PF, Bruner SD (2008) Structure elucidation and biosynthesis of fuscachelins peptide siderophores from the moderate thermophile Thermobifida fusca. Proc Natl Acad Sci USA 105:15311–15316. doi:10.1073/pnas.0805451105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doukyu N, Ogino H (2010) Organic solvent-tolerant enzymes. Biochem Eng J 48:270–282. doi:10.1016/j.bej.2009.09.009

    Article  CAS  Google Scholar 

  • Drechsel H, Metzger J, Freund S, Jung G, Boelaert JR, Winkelmann G (1991) Rhizoferrin—a novel siderophore from the fungus rhizopus-microsporus var rhizopodiformis. Biol Met 4:238–243. doi:10.1007/bf01141187

    Article  CAS  Google Scholar 

  • Eichler J (2003) Facing extremes: archaeal surface-layer (glyco) proteins. Microbiol 149:3347–3351. doi:10.1099/mic.0.26591-0

    Article  CAS  Google Scholar 

  • Ejje N, Soe CZ, Gu J, Codd R (2013) The variable hydroxamic acid siderophore metabolome of the marine actinomycete Salinispora tropica CNB-440. Metallomics 5:1519–1528. doi:10.1039/c3mt00230f

    Article  CAS  PubMed  Google Scholar 

  • Emmerich M, Bhansali A, Loesekann-Behrens T, Schroeder C, Kappler A, Behrens S (2012) Abundance, distribution, and activity of Fe(II)-oxidizing and Fe(iii)-reducing microorganisms in hypersaline sediments of Lake Kasin, Southern Russia. Appl Environ Microbiol 78:4386–4399. doi:10.1128/aem.07637-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang J, Zhang L, Bazylinski DA (2010) Deep-sea piezosphere and piezophiles: geomicrobiology and biogeochemistry. Trends Microbiol 18:413–422. doi:10.1016/j.tim.2010.06.006

    Article  CAS  PubMed  Google Scholar 

  • Ferguson AD, Hofmann E, Coulton JW, Diederichs K, Welte W (1998) Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. Science 282:2215–2220. doi:10.1126/science.282.5397.2215

    Article  CAS  PubMed  Google Scholar 

  • Ferguson AD, Braun V, Fiedler HP, Coulton JW, Diederichs K, Welte W (2000) Crystal structure of the antibiotic albomycin in complex with the outer membrane transporter FhuA. Protein Sci 9:956–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson AD et al (2001) Active transport of an antibiotic rifamycin derivative by the outer-membrane protein FhuA. Structure 9:707–716. doi:10.1016/s0969-2126(01)00631-1

    Article  CAS  PubMed  Google Scholar 

  • Ferguson AD, Chakraborty R, Smith BS, Esser L, van der Helm D, Deisenhofer J (2002) Structural basis of gating by the outer membrane transporter FecA. Science 295:1715–1719. doi:10.1126/science.1067313

    Article  CAS  PubMed  Google Scholar 

  • Figueroa LOS, Schwarz BH, Richards AM (2012) Characterization of New Siderophores Produced by a Soda Lake Isolate. Abstr Gen Meet Amer Soc Microbiol 112:404

    Google Scholar 

  • Figueroa LOS, Schwarz B, Richards AM (2015) Structural characterization of amphiphilic siderophores produced by a soda lake isolate, Halomonas sp SL01, reveals cysteine-, phenylalanine- and proline-containing head groups. Extremophiles 19:1183–1192. doi:10.1007/s00792-015-0790-x

    Article  CAS  PubMed  Google Scholar 

  • Fineran PC, Slater H, Everson L, Hughes K, Salmond GPC (2005) Biosynthesis of tripyrrole and beta-lactam secondary metabolites in Serratia: integration of quorum sensing with multiple new regulatory components in the control of prodigiosin and carbapenem antibiotic production. Mol Microbiol 56:1495–1517. doi:10.1111/j.1365-2958.2005.04660.x

    Article  CAS  PubMed  Google Scholar 

  • Fisher CR, Davies NMLL, Wyckoff EE, Feng Z, Oaks EV, Payne SM (2009) Genetics and virulence association of the shigella flexneri sit iron transport system. Infect Immun 77:1992–1999. doi:10.1128/iai.00064-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleming EJ, Davis RE, McAllister SM, Chan CS, Moyer CL, Tebo BM, Emerson D (2013) Hidden in plain sight: discovery of sheath-forming, iron-oxidizing Zetaproteobacteria at Loihi Seamount, Hawaii, USA. FEMS Microbiol Ecol 85:116–127. doi:10.1111/1574-6941.12104

    Article  PubMed  Google Scholar 

  • Friedmann EI, Ocampo R (1976) Endolithic blue-green-algae in dry valleys—primary producers in Antarctic desert ecosystem. Science 193:1247–1249. doi:10.1126/science.193.4259.1247

    Article  CAS  PubMed  Google Scholar 

  • Friedmann EI, McKay CP, Nienow JA (1987) The cryptoendolithic microbial environment in the Ross Desert of Antarctica—satellite-transmitted continuos nanoclimate data, 1984 to 1986. Polar Biol 7:273–287. doi:10.1007/bf00443945

    Article  CAS  PubMed  Google Scholar 

  • Fujita MJ, Sakai R (2014) Production of avaroferrin and putrebactin by heterologous expression of a deep-sea metagenomic DNA. Mar Drugs 12:4799–4809. doi:10.3390/md12094799

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gascoyne DJ, Connor JA, Bull AT (1991a) Capacity of siderophore—producing alkalophilic bacteria to accumulate iron, gallium and aluminum. Appl Microbiol Biotechnol 36:136–141

    Article  Google Scholar 

  • Gascoyne DJ, Connor JA, Bull AT (1991b) Isolation of bacteria producing siderophores under alkaline conditions. Appl Microbiol Biotechnol 36:130–135

    Article  CAS  Google Scholar 

  • Gauglitz J, Butler A (2013) Amino acid variability in the peptide composition of a suite of amphiphilic peptide siderophores from an open ocean Vibrio species. J Biol Inorg Chem 18:489–497. doi:10.1007/s00775-013-0995-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gauglitz JM, Zhou HJ, Butler A (2012) A suite of citrate-derived siderophores from a marine Vibrio species isolated following the Deepwater Horizon oil spill. J Inor Biochem 107:90–95. doi:10.1016/j.jinorgbio.2011.10.013

    Article  CAS  Google Scholar 

  • Gehring AM, Bradley KA, Walsh CT (1997) Enterobactin biosynthesis in Escherichia coli: isochorismate lyase (EntB) is a bifunctional enzyme that is phosphopantetheinylated by EntD and then acylated by EntE using ATP and 2,3-dihydroxybenzoate. Biochem 36:8495–8503. doi:10.1021/bi970453p

    Article  CAS  Google Scholar 

  • Georlette D, Damien B, Blaise V, Depiereux E, Uversky VN, Gerday C, Feller G (2003) Structural and functional adaptations to extreme temperatures in psychrophilic, mesophilic, and thermophilic DNA ligases. J Biol Chem 278:37015–37023. doi:10.1074/jbc.M305142200

    Article  CAS  PubMed  Google Scholar 

  • Ghozlan H, Deif H, Abu Kandil R, Sabry S (2006) Biodiversity of moderately halophilic bacteria in hypersaline habitats in Egypt. J Gen Appl Microbiol 52:63–72. doi:10.2323/jgam.52.63

    Article  CAS  PubMed  Google Scholar 

  • Gledhill M, McCormack P, Ussher S, Achterberg E, Mantoura R, Worsfold P (2004) Production of siderophore type chelates by mixed bacterioplankton populations in nutrient enriched seawater incubations. Mar Chem 88:75–83. doi:10.1016/j.marchem.2004.03.003

    Article  CAS  Google Scholar 

  • Goswami D, Dhandhukia P, Patel P, Thakker JN (2014a) Screening of PGPR from saline desert of Kutch: growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiol Res 169:66–75. doi:10.1016/j.micres.2013.07.004

    Article  CAS  PubMed  Google Scholar 

  • Goswami D, Pithwa S, Dhandhukia P, Thakker JN (2014b) Delineating kocuria turfanensis 2M4 as a credible PGPR: a novel IAA-producing bacteria isolated from saline desert. J Plant Interact 9:566–576. doi:10.1080/17429145.2013.871650

    Article  CAS  Google Scholar 

  • Gounder K et al (2011) Sequence of the hyperplastic genome of the naturally competent thermus scotoductus SA-01. BMC Genom 12:14. doi:10.1186/1471-2164-12-577

    Article  CAS  Google Scholar 

  • Guerry P, PerezCasal J, Yao RJ, McVeigh A, Trust TJ (1997) A genetic locus involved in iron utilization unique to some Campylobacter strains. J Bacteriol 179:3997–4002

    CAS  PubMed  PubMed Central  Google Scholar 

  • Handley KM, Lloyd JR (2013) Biogeochemical implications of the ubiquitous colonization of marine habitats and redox gradients by Marinobacter species. Front Microbiol 4:10. doi:10.3389/fmicb.2013.00136

    Article  Google Scholar 

  • Hantke K (1987) Ferrous iron transport mutants in escherichia-coli-K12. FEMS Microbiol Lett 44:53–57. doi:10.1111/j.1574-6968.1987.tb02241.x

    Article  CAS  Google Scholar 

  • Hantke K (2004) Ferrous iron transport. In: Crosa JH, Mey AR, Payne SM (eds) Iron transport in bacteria, vol 1. ASM Press, Washington, DC, pp 178–184

    Chapter  Google Scholar 

  • Harris W, Amin S, Kupper F, Green D, Carrano C (2007) Borate binding to siderophores: Structure and stability. J Am Chem Soc 129:12263–12271. doi:10.1021/ja073788v

    Article  CAS  PubMed  Google Scholar 

  • Hedlund BP, Dodsworth JA, Cole JK, Panosyan HH (2013) An integrated study reveals diverse methanogens, Thaumarchaeota, and yet-uncultivated archaeal lineages in Armenian hot springs Anton Van Leeuwenhoek. Anton Leeuw Int J G 104:71–82. doi:10.1007/s10482-013-9927-z

    Article  Google Scholar 

  • Homann V, Sandy M, Tincu J, Templeton A, Tebo B, Butler A (2009) Loihichelins A-F, a suite of amphiphilic siderophores produced by the marine bacterium halomonas LOB-5. J Nat Prod 72:884–888. doi:10.1021/np800640h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopkinson B, Morel F (2009) The role of siderophores in iron acquisition by photosynthetic marine microorganisms. Biometals 22:659–669. doi:10.1007/s10534-009-9235-2

    Article  CAS  PubMed  Google Scholar 

  • Horowitz NH, Hubbard JS, Cameron RE (1972) Microbiology of dry Valleys of Antarctica. Science 176:242. doi:10.1126/science.176.4032.242

    Article  CAS  PubMed  Google Scholar 

  • Huidrom P, Rajkumar B, Sharma GD (2011) Screening of native bacteria isolated from tea garden soil of South Assam for their abiotic stress tolerance. J Pure Appl Microbiol 5:349–353

    Google Scholar 

  • Ito Y, Butler A (2005) Structure of synechobactins, new siderophores of the marine cyanobacterium Synechococcus sp PCC 7002. Limnol Oceanogr 50:1918–1923

    Article  CAS  Google Scholar 

  • Jarrell KF et al. (2011) Archaeal surface appendages: their function and the critical role of N-linked glycosylation in their assembly. In: Conference on instruments, methods, and missions for astrobiology XIV, SPIE, San Diego, CA, Aug 23–25 2011. doi:81520o10.1117/12.892939

  • Jorgensen SL, Thorseth IH, Pedersen RB, Baumberger T, Schleper C (2013) Quantitative and phylogenetic study of the Deep Sea Archaeal Group in sediments of the Arctic mid-ocean spreading ridge. Front Microbiol 4:299. doi:10.3389/fmicb.2013.00299

    Article  PubMed  PubMed Central  Google Scholar 

  • Kadirvel M, Fanimarvasti F, Forbes S, McBain A, Gardiner JM, Brown GD, Freeman S (2014) Inhibition of quorum sensing and biofilm formation in Vibrio harveyi by 4-fluoro-DPD: a novel potent inhibitor of Al-2 signalling. Chem Commun 50:5000–5002. doi:10.1039/c3cc49678c

    Article  CAS  Google Scholar 

  • Kalinowski BE, Johnsson A, Arlinger J, Pedersen K, Odeggrd-Jensen A, Edberg F (2006) Microbial mobilization of uranium from shale mine waste. Geomicrobiol J 23:157–164. doi:10.1080/01490450600599197

    Article  CAS  Google Scholar 

  • Karagoz K, Ates F, Karagoz H, Kotan R, Cakmakci R (2012) Characterization of plant growth-promoting traits of bacteria isolated from the rhizosphere of grapevine grown in alkaline and acidic soils. Eur J Soil Biol 50:144–150. doi:10.1016/j.ejsobi.2012.01.007

    Article  CAS  Google Scholar 

  • Kaye J, Sylvan J, Edwards K, Baross J (2011) Halomonas and Marinobacter ecotypes from hydrothermal vent, subseafloor and deep-sea environments. FEMS Microbiol Ecol 75:123–133. doi:10.1111/j.1574-6941.2010.00984.x

    Article  CAS  PubMed  Google Scholar 

  • Kodani S et al (2013) Structure and biosynthesis of scabichelin, a novel tris-hydroxamate siderophore produced by the plant pathogen Streptomyces scabies 87.22. Org Biomol Chem 11:4686–4694. doi:10.1039/c3ob40536b

    Article  CAS  PubMed  Google Scholar 

  • Kogej T, Gorbushina AA, Gunde-Cimerman N (2006) Hypersaline conditions induce changes in cell-wall melanization and colony structure in a halophilic and a xerophilic black yeast species of the genus Trimmatostroma. Mycol Res 110:713–724. doi:10.1016/j.mycres.2006.01.014

    Article  PubMed  Google Scholar 

  • Konetschny-Rapp S, Jung G, Raymond KN, Meiwes J, Zahner H (1992) Solution Thermodynamics of the Ferric Complexes of New Desferrioxamine Siderophores Obtained by Directed Fermentation. J Am Chem Soc 114:2224–2230. doi:10.1021/ja00032a043

    Article  CAS  Google Scholar 

  • Kozubal MA et al (2013) Geoarchaeota: a new candidate phylum in the Archaea from high-temperature acidic iron mats in Yellowstone National Park. ISME J 7:622–634. doi:10.1038/ismej.2012.132

    Article  CAS  PubMed  Google Scholar 

  • Krewulak KD, Vogel HJ (2008) Structural biology of bacterial iron uptake. Biochim Biophys Acta 1778:1781–1804. doi:10.1016/j.bbamem.2007.07.026

    Article  CAS  PubMed  Google Scholar 

  • Kube M et al (2013) Genome sequence and functional genomic analysis of the oil-degrading bacterium Oleispira Antarctica. Nature Commun 4:11. doi:10.1038/ncomms3156

    Article  CAS  Google Scholar 

  • Kusel K, Dorsch T, Acker G, Stackebrandt E (1999) Microbial reduction of Fe(III) in acidic sediments: isolation of Acidiphilium cryptum JF-5 capable of coupling the reduction of Fe(III) to the oxidation of glucose. Appl Environ Microbiol 65:3633–3640

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lewenza S, Conway B, Greenberg EP, Sokol PA (1999) Quorum sensing in Burkholderia cepacia: identification of the LuxRI homologs CepRI. J Bacteriol 181:748–756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li XY, Hu Y, Gong J, Zhang LS, Wang GJ (2013) Comparative genome characterization of Achromobacter members reveals potential genetic determinants facilitating the adaptation to a pathogenic lifestyle. Appl Microbiol Biotechnol 97:6413–6425. doi:10.1007/s00253-013-5018-3

    Article  CAS  PubMed  Google Scholar 

  • Liu SV, Zhou JZ, Zhang CL, Cole DR, GajdarziskaJosifovska M, Phelps TJ (1997) Thermophilic Fe(III)-reducing bacteria from the deep subsurface: the evolutionary implications. Science 277:1106–1109. doi:10.1126/science.277.5329.1106

    Article  CAS  Google Scholar 

  • Liu N, Shang F, Xi LJ, Huang Y (2013) Tetroazolemycins A and B, two new oxazole-thiazole siderophores from deep-sea streptomyces olivaceus FXJ8.012. Mar Drugs 11:1524–1533. doi:10.3390/md11051524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenzo Vd, Perez-Martin J, Escolar L, Pesole G, Bertoni G (2004) Mode of binding of the fur protein to target DNA: negative regulation of iron-controlled gene expression. In: Crosa JH, Mey AR, Payne SM (eds) Iron transport in bacteria, vol 1. ASM Press, Washington, DC, pp 185–196

    Chapter  Google Scholar 

  • Luo XZ, Wu SX, Liang YQ (2002) Vesicle formation induced by metal ions from micelle-forming sodium hexadecylimino diacetate in dilute aqueous. Chem Commun 5:492–493. doi:10.1039/b110797f

    Article  CAS  Google Scholar 

  • Luque-Almagro VM, Blasco R, Huertas MJ, Martinez-Luque M, Moreno-Vivian C, Castillo F, Roldan MD (2005a) Alkaline cyanide biodegradation by Pseudomonas pseudoalcaligenes CECT5344. Biochem Soc Transact 33:168–169

    Article  CAS  Google Scholar 

  • Luque-Almagro VM et al (2005b) Bacterial degradation of cyanide and its metal complexes under alkaline conditions. Appl Environ Microbiol 71:940–947. doi:10.1128/aem.71.2.940-947.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luque-Almagro VM, Blasco R, Martinez-Luque M, Moreno-Vivian C, Castillo F, Roldan MD (2011) Bacterial cyanide degradation is under review: Pseudomonas pseudoalcaligenes CECT5344, a case of an alkaliphilic cyanotroph. Biochem Soc Trans 39:269–274. doi:10.1042/bst0390269

    Article  CAS  PubMed  Google Scholar 

  • Luther GW, Wu JF (1997) What controls dissolved iron concentrations in the world ocean? A comment. Mar Chem 57:173–179. doi:10.1016/s0304-4203(97)00046-7

    Article  CAS  Google Scholar 

  • Machuca A, Aoyama H, Duran N (1999) Isolation and partial characterization of an extracellular low-molecular mass component with high phenoloxidase activity from Thermoascus aurantiacus. Biochem Biophys Res Commun 256:20–26. doi:10.1006/bbrc.1998.9927

    Article  CAS  PubMed  Google Scholar 

  • Malviya N, Yandigeri MS, Yadav AK, Solanki MK, Arora DK (2014) Isolation and characterization of novel alkali-halophilic actinomycetes from the Chilika brackish water lake. India Ann Microbiol 64:1829–1838. doi:10.1007/s13213-014-0831-1

    Article  CAS  Google Scholar 

  • Martin J, Ito Y, Homann V, Haygood M, Butler A (2006) Structure and membrane affinity of new amphiphilic siderophores produced by Ochrobactrum sp SP18. J Biol Inorg Chem 11:633–641. doi:10.1007/s00775-006-0112-y

    Article  CAS  PubMed  Google Scholar 

  • Martinez J, Butler A (2007) Marine amphiphilic siderophores: marinobactin structure, uptake, and microbial partitioning. J Inorg Biochem 101:1692–1698. doi:10.1016/j.jinorgbio.2007.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez J, Zhang G, Holt P, Jung H, Carrano C, Haygood M, Butler A (2000) Self-assembling amphiphilic siderophores from marine bacteria. Science 287:1245–1247. doi:10.1126/science.287.5456.1245

    Article  CAS  PubMed  Google Scholar 

  • Martinez JS, Haygood MG, Butler A (2001) Identification of a natural desferrioxamine siderophore produced by a marine bacterium. Limnol Oceanogr 46:420–424

    Article  Google Scholar 

  • Martinez J, Carter-Franklin J, Mann E, Martin J, Haygood M, Butler A (2003) Structure and membrane affinity of a suite of amphiphilic siderophores produced by a marine bacterium. Proc Natl Acad Sci USA 100:3754–3759. doi:10.1073/pnas.0637444100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMillan DGG et al (2010) Acquisition of iron by alkaliphilic bacillus species. Appl Environ Microbiol 76:6955–6961. doi:10.1128/aem.01393-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meiwes J, Fiedler HP, Haag H, Zahner H, Konetschny-Rapp S, Jung G (1990) Isolation and characterization of staphyloferrin A, a compound with siderophore activity from Staphylococcus hyicus DSM 20459. FEMS Microbiol Lett 55:201–205

    Article  CAS  PubMed  Google Scholar 

  • Mishra PK, Mishra S, Selvakumar G, Bisht SC, Bisht JK, Kundu S, Gupta HS (2008) Characterisation of a psychrotolerant plant growth promoting Pseudomonas sp strain PGERs17 (MTCC 9000) isolated from North Western Indian Himalayas. Ann Microbiol 58:561–568

    Article  Google Scholar 

  • Neilands JB (1995) Siderophores—structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    Article  CAS  PubMed  Google Scholar 

  • Nogi Y, Kato C, Horikoshi K (1998) Moritella japonica sp. nov., a novel barophilic bacterium isolated from a Japan Trench sediment. J Gen Appl Microbiol 44:289–295. doi:10.2323/jgam.44.289

    Article  CAS  PubMed  Google Scholar 

  • Olsson-Francis K, de la Torre R, Cockell CS (2010) Isolation of Novel Extreme-Tolerant Cyanobacteria from a Rock-Dwelling Microbial Community by Using Exposure to Low Earth Orbit. Appl Environ Microbiol 76:2115–2121. doi:10.1128/aem.02547-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osorio H, Martinez V, Nieto PA, Holmes DS, Quatrini R (2008) Microbial iron management mechanisms in extremely acidic environments: comparative genomics evidence for diversity and versatility. BMC Microbiol 8:1. doi:10.1186/1471-2180-8-203

    Article  CAS  Google Scholar 

  • Owen T, Pynn R, Martinez J, Butler A (2005) Micelle-to-vesicle transition of an iron-chelating microbial surfactant, marinobactin E. Langmuir 21:12109–12114. doi:10.1021/la0519352

    Article  CAS  PubMed  Google Scholar 

  • Owen T, Pynn R, Hammouda B, Butler A (2007) Metal-dependent self-assembly of a microbial surfactant. Langmuir 23:9393–9400. doi:10.1021/la700671p

    Article  CAS  PubMed  Google Scholar 

  • Owen T, Webb S, Butler A (2008) XAS study of a metal-induced phase transition by a microbial surfactant. Langmuir 24:4999–5002. doi:10.1021/la703833v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Packiavathy IASV, Sasikumar P, Pandian SK, Veera Ravi A (2013) Prevention of quorum-sensing-mediated biofilm development and virulence factors production in Vibrio spp. by curcumin. Appl Microbiol Biotechnol 97:10177–10187. doi:10.1007/s00253-013-4704-5

    Article  CAS  PubMed  Google Scholar 

  • Pan HQ, Hu JC (2015) Draft genome sequence of the novel strain Pseudomonas sp 10B238 with potential ability to produce antibiotics from deep-sea sediment. Mar Genom 23:55–57. doi:10.1016/j.margen.2015.05.003

    Article  Google Scholar 

  • Pandit AS et al (2015) A snapshot of microbial communities from the Kutch: one of the largest salt deserts in the World. Extremophiles 19:973–987. doi:10.1007/s00792-015-0772-z

    Article  PubMed  Google Scholar 

  • Pettit RK (2011) Culturability and secondary metabolite diversity of extreme microbes: expanding contribution of deep sea and deep-sea vent microbes to natural product discovery. Mar Biotechnol 13:1–11. doi:10.1007/s10126-010-9294-y

    Article  CAS  PubMed  Google Scholar 

  • Picard A, Testemale D, Wagenknecht L, Hazael R, Daniel I (2014) Iron reduction by the deep-sea bacterium Shewanella profunda LT13a under subsurface pressure and temperature conditions. Front Microbiol 5:796. doi:10.3389/fmicb.2014.00796

    PubMed  Google Scholar 

  • Pick U (2004) The respiratory inhibitor antimycin A specifically binds Fe(III) ions and mediates utilization of iron by the halotolerant alga Dunaliella salina (Chlorophyta). Biometals 17:79–86. doi:10.1023/a:1024480720962

    Article  CAS  PubMed  Google Scholar 

  • Potrykus J, Jonna VR, Dopson M (2011) Iron homeostasis and responses to iron limitation in extreme acidophiles from the Ferroplasma genus. Proteomics 11:52–63. doi:10.1002/pmic.201000193

    Article  CAS  PubMed  Google Scholar 

  • Quatrini R, Lefimil C, Holmes DS, Jedlicki E (2005) The ferric iron uptake regulator (Fur) from the extreme acidophile Acidithiobacillus ferrooxidans. Microbiol 151:2005–2015. doi:10.1099/mic.0.27581-0

    Article  CAS  Google Scholar 

  • Quatrini R, Lefimil C, Veloso FA, Pedroso I, Holmes DS, Jedlicki E (2007) Bioinformatic prediction and experimental verification of Fur-regulated genes in the extreme acidophile Acidithiobacillus ferrooxidans. Nucleic Acids Res 35:2153–2166. doi:10.1093/nar/gkm068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raina S, De Vizio D, Palonen EK, Odell M, Brandt AM, Soini JT, Keshavarz T (2012) Is quorum sensing involved in lovastatin production in the filamentous fungus Aspergillus terreus? Process Biochem 47:843–852. doi:10.1016/j.procbio.2012.02.021

    Article  CAS  Google Scholar 

  • Ramadoss D, Lakkineni VK, Bose P, Ali S, Annapurna K (2013) Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. Springer Plus 2:7. doi:10.1186/2193-1801-2-6

    Article  CAS  Google Scholar 

  • Ren GM, Jin Y, Zhang CM, Gu HD, Qu JJ (2015) Characteristics of Bacillus sp PZ-1 and its biosorption to Pb(II). Ecotoxicol Environ Saf 117:141–148. doi:10.1016/j.ecoenv.2015.03.033

    Article  CAS  PubMed  Google Scholar 

  • Richards AM, Peyton BM, Apel WA (2006) Characterization of siderophores produced by halophilic microorganisms isolated from Soap Lake in Washington State. Abstr Gen Meet Am Soc Microbiol 106:387

    Google Scholar 

  • Richards AM, Peyton BM, Gerlach R, Apell WA (2007) Characterization of siderophores produced by halo-alkaliphiles isolated from terrestrial environments. Abstr Gen Meet Am Soc Microbiol 107:565

    Google Scholar 

  • Rossello-Mora RA et al (1995) Isolation and taxonomic characterization of a halotolerant, facultatively iron-reducing bacterium system. Appl Microbiol 17:569–573

    Article  Google Scholar 

  • Sahay H, Mahfooz S, Singh AK, Singh S, Kaushik R, Saxena AK, Arora DK (2012) Exploration and characterization of agriculturally and industrially important haloalkaliphilic bacteria from environmental samples of hypersaline Sambhar lake, India. World J Microbiol Biotechnol 28:3207–3217. doi:10.1007/s11274-012-1131-1

    Article  CAS  PubMed  Google Scholar 

  • Sandy M, Butler A (2009) Microbial iron acquisition: marine and terrestrial siderophores. Chem Rev 109:4580–4595. doi:10.1021/cr9002787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarethy IP, Saxena Y, Kapoor A, Sharma M, Sharma SK, Gupta V, Gupta S (2011) Alkaliphilic bacteria: applications in industrial biotechnology. J Ind Microbiol Biotechnol 38:769–790. doi:10.1007/s10295-011-0968-x

    Article  CAS  PubMed  Google Scholar 

  • Sarkar A, Kazy SK, Sar P (2013) Characterization of arsenic resistant bacteria from arsenic rich groundwater of West Bengal, India. Ecotoxicology 22:363–376. doi:10.1007/s10646-012-1031-z

    Article  CAS  PubMed  Google Scholar 

  • Scandurra R, Consalvi V, Chiaraluce R, Politi L, Engel PC (1998) Protein thermostability in extremophiles. Biochimie 80:933–941. doi:10.1016/s0300-9084(00)88890-2

    Article  CAS  PubMed  Google Scholar 

  • Serrano Figueroa LO (2015) A study on amphiphilic siderophore detection, structure elucidation and their iron-mediated vesicle self-assembly. Montana State University, Bozeman

    Google Scholar 

  • Seyedsayamdost MR, Traxler MF, Zheng S-L, Kolter R, Clardy J (2011) Structure and biosynthesis of amychelin an unusual mixed-ligand siderophore from Amycolatopsis sp. AA4. J Am Chem Soc 133:11434–11437. doi:10.1021/ja203577e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siebert J, Hirsch P, Hoffmann B, Gliesche CG, Peissl K, Jendrach M (1996) Cryptoendolithic microorganisms from Antarctic sandstone of linnaeus terrace (Asgard range): diversity, properties and interactions. Biodiver Conserv 5:1337–1363. doi:10.1007/bf00051982

    Article  Google Scholar 

  • Soe CZ, Codd R (2014) Unsaturated macrocyclic dihydroxamic acid siderophores produced by shewanella putrefaciens using precursor-directed biosynthesis. ACS Chem Biol 9:945–956. doi:10.1021/cb400901j

    Article  CAS  PubMed  Google Scholar 

  • Stintzi A, Evans K, Meyer JM, Poole K (1998) Quorum-sensing and siderophore biosynthesis in Pseudomonas aeruginosa: lasR/lasI mutants exhibit reduced pyoverdine biosynthesis. FEMS Microbiol Lett 166:341–345. doi:10.1111/j.1574-6968.1998.tb13910.x

    Article  CAS  PubMed  Google Scholar 

  • Sudek LA, Templeton AS, Tebo BM, Staudigel H (2009) Microbial ecology of Fe (hydr)oxide mats and Basaltic rock from Vailulu’u seamount, American Samoa. Geomicrobiol J 26:581–596. doi:10.1080/01490450903263400

    Article  CAS  Google Scholar 

  • Sunagawa S et al (2015) Structure and function of the global ocean microbiome. Science 348:1261359. doi:10.1126/science.1261359

    Article  PubMed  CAS  Google Scholar 

  • Tal-Gan Y, Stacy DM, Foegen MK, Koenig DW, Blackwell HE (2013) Highly potent inhibitors of quorum sensing in staphylococcus aureus revealed through a systematic synthetic study of the group-iii autoinducing peptide. J Am Chem Soc 135:7869–7882. doi:10.1021/ja3112115

    Article  CAS  PubMed  Google Scholar 

  • Tang YJ et al (2009) Analysis of metabolic pathways and fluxes in a newly discovered thermophilic and ethanol-tolerant geobacillus strain. Biotechnol Bioeng 102:1377–1386. doi:10.1002/bit.22181

    Article  CAS  PubMed  Google Scholar 

  • Temirov YV, Esikova TZ, Kashparov IA, Balashova TA, Vinokurov LM, Alakhov YB (2003) A catecholic siderophore produced by the thermoresistant Bacillus licheniformis VK21 strain. Russ J Bioorg Chem 29:542–549. doi:10.1023/B:RUBI.0000008894.80972.2e

    Article  CAS  Google Scholar 

  • Tipre S, Pindi PK, Sharma S (2015) Biotechnological potential of a Halobacterium of family Bacillaceae Indian. J Biotechnol 14:65–71

    Article  CAS  Google Scholar 

  • Tsolis RM, Baumler AJ, Heffron F, Stojiljkovic I (1996) Contribution of TonB- and Feo-mediated iron uptake to growth of Salmonella typhimurium in the mouse. Infect Immun 64:4549–4556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vasavi HS, Arun AB, Rekha P-D (2014) Anti-quorum sensing activity of Psidium guajava L. flavonoids against Chromobacterium violaceum and Pseudomonas aeruginosa PAO1. Microbiol Immunol 58:286–293. doi:10.1111/1348-0421.12150

    Article  CAS  PubMed  Google Scholar 

  • Verma R, Naosekpam AS, Kumar S, Prasad R, Shanmugam V (2007) Influence of soil reaction on diversity and antifungal activity of fluorescent pseudomonads in crop rhizospheres. Bioresour Technol 98:1346–1352. doi:10.1016/j.biortech.2006.05.030

    Article  CAS  PubMed  Google Scholar 

  • Vishal VK, Manuel VBR (2015) Effect of ACC-deaminase producing Bacillus cereus brm on the growth of Vigna radiata (Mung beans) under salinity stress. Res J Biotechnol 10:122–130

    Google Scholar 

  • Vraspir JM, Holt PD, Butler A (2011) Identification of new members within suites of amphiphilic marine siderophores. Biometals 24:85–92. doi:10.1007/s10534-010-9378-1

    Article  CAS  PubMed  Google Scholar 

  • Wang F et al (2008) Environmental adaptation: genomic analysis of the piezotolerant and psychrotolerant deep-sea iron reducing bacterium shewanella piezotolerans WP3. PLoS One 3:e1937. doi:10.1371/journal.pone.0001937

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weaver EA, Wyckoff EE, Mey AR, Morrison R, Payne SM (2013) FeoA and FeoC are essential components of the vibrio cholerae ferrous iron uptake system, and FeoC interacts with FeoB. J Bacteriol 195:4826–4835. doi:10.1128/jb.00738-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilhelm SW, MacAuley K, Trick CG (1998) Evidence for the importance of catechol-type siderophores in the iron-limited growth of a cyanobacterium. Limnol Oceanogr 43:992–997

    Article  CAS  Google Scholar 

  • Wirsen CO, Molyneaux SJ (1999) A study of deep-sea natural microbial populations and barophilic pure cultures using a high-pressure chemostat. Appl Environ Microbiol 65:5314–5321

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woo S-M, Kim S-D (2008) Structural identification of siderophore(AH18) from bacillus subtilis AH18, a biocontrol agent of phytophthora blight disease in red-pepper Korean. J Microbiol Biotechnol 36:326–335

    CAS  Google Scholar 

  • Wood AP, Kelly DP (1991) Isolation and characterization of thiobacillus-halophilus Sp-nov, A sulfur-oxidizing autotrophic eubacterium from a Western Australian Hypersaline Lake. Arch Microbiol 156:277–280. doi:10.1007/bf00262998

    Article  CAS  Google Scholar 

  • Wu LL, Brucker RP, Beard BL, Roden EE, Johnson CM (2013a) Iron isotope characteristics of hot springs at chocolate pots, Yellowstone National Park. Astrobiology 13:1091–1101. doi:10.1089/ast.2013.0996

    Article  CAS  PubMed  Google Scholar 

  • Wu WF, Wang FP, Li JH, Yang XW, Xiao X, Pan YX (2013b) Iron reduction and mineralization of deep-sea iron reducing bacterium Shewanella piezotolerans WP3 at elevated hydrostatic pressures. Geobiology 11:593–601. doi:10.1111/gbi.12061

    CAS  PubMed  Google Scholar 

  • Xu G, Martinez J, Groves J, Butler A (2002) Membrane affinity of the amphiphilic marinobactin siderophores. J Am Chem Soc 124:13408–13415. doi:10.1021/ja026768w

    Article  CAS  PubMed  Google Scholar 

  • Yadav S, Kaushik R, Saxena AK, Arora DK (2011) Diversity and phylogeny of plant growth-promoting bacilli from moderately acidic soil. J Basic Microbiol 51:98–106. doi:10.1002/jobm.201000098

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2015a) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119:683–693. doi:10.1016/j.jbiosc.2014.11.006

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Tyagi SP, Kaushik R, Saxena AK (2015b) Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J Microbiol Biotechnol 31:95–108. doi:10.1007/s11274-014-1768-z

    Article  CAS  PubMed  Google Scholar 

  • Ye Q, Roh Y, Carroll SL, Blair B, Zhou JZ, Zhang CL, Fields MW (2004) Alkaline anaerobic respiration: isolation and characterization of a novel alkaliphilic and metal-reducing bacterium. Appl Environ Microbiol 70:5595–5602. doi:10.1128/aem.70.9.5595-5602.2004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yue WW, Grizot S, Buchanan SK (2003) Structural evidence for iron-free citrate and ferric citrate binding to the TonB-dependent outer membrane transporter FecA. J Mol Biol 332:353–368. doi:10.1016/s0022-2836(03)00855-6

    Article  CAS  PubMed  Google Scholar 

  • Zane HK, Butler A (2013) Isolation, structure elucidation, and iron-binding properties of lystabactins, siderophores isolated from a marine Pseudoalteromonas sp. J Nat Prod 76:648–654. doi:10.1021/np3008655

    Article  CAS  PubMed  Google Scholar 

  • Zane HK, Naka H, Rosconi F, Sandy M, Haygood MG, Butler A (2014) Biosynthesis of amphi-enterobactin siderophores by Vibrio harveyi BAA-1116: identification of a bifunctional nonribosomal peptide synthetase condensation domain. J Am Chem Soc 136:5615–5618. doi:10.1021/ja5019942

    Article  CAS  PubMed  Google Scholar 

  • Zhang CL, Stapleton RD, Zhou JZ, Palumbo AV, Phelps TJ (1999) Iron reduction by psychotrophic enrichment cultures. FEMS Microbiol Ecol 30:367–371. doi:10.1111/j.1574-6941.1999.tb00664.x

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Dong HL, Liu D, Agrawal A (2013) Microbial reduction of Fe(III) in smectite minerals by thermophilic methanogen Methanothermobacter thermautotrophicus. Geochim Cosmochim Acta 106:203–215. doi:10.1016/j.gca.2012.12.031

    Article  CAS  Google Scholar 

  • Zhou J, Liu S, Xia B, Zhang C, Palumbo AV, Phelps TJ (2001) Molecular characterization and diversity of thermophilic iron-reducing enrichment cultures from deep subsurface environments. J Appl Microbiol 90:96–105. doi:10.1046/j.1365-2672.2001.01192.x

    Article  CAS  PubMed  Google Scholar 

  • Zobell CE, Morita RY (1957) Barophilic bacteria in some deep sea sediments. J Bacteriol 73:563–568

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Special thanks for the co-authors, Drs. Abigail M. Richards and Anne K. Camper, for their thoughtful insight and review of the manuscript. Thank you to members of the Camper Laboratory and graduate students and staff from the Center for Biofilm Engineering, Montana State University, Bozeman, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis O. De Serrano.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Serrano, L.O., Camper, A.K. & Richards, A.M. An overview of siderophores for iron acquisition in microorganisms living in the extreme. Biometals 29, 551–571 (2016). https://doi.org/10.1007/s10534-016-9949-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-016-9949-x

Keywords

Navigation