Advertisement

BioMetals

, Volume 29, Issue 3, pp 399–409 | Cite as

Possible role of metal ionophore against zinc induced cognitive dysfunction in d-galactose senescent mice

  • Kanchan Bharti
  • Abu Bakar Abdul Majeed
  • Atish Prakash
Article

Abstract

Metal ionophores are considered as potential anti-dementia agents, and some are currently undergoing clinical trials. Many metals are known to accumulate and distribute abnormally in the aging brain. Alterations in zinc metal homeostasis in the glutaminergic synapse could contribute to ageing and the pathophysiology of Alzheimer’s disease (AD). The present study was designed to investigate the effect of metal ionophores on long term administration of zinc in D-galactose induced senescent mice. The ageing model was established by combined administration of zinc and D-galactose to mice for 6 weeks. A novel metal ionophore, PBT-2 was given daily to zinc-induced d-galactose senescent mice. The cognitive behaviour of mice was monitored using the Morris Water Maze. The anti-oxidant status and amyloidogenic activity in the ageing mouse was measured by determining mito-oxidative parameters and deposition of amyloid β (Aβ) in the brain. Systemic administration of both zinc and D-galactose significantly produced memory deficits, mito-oxidative damage, heightened acetylcholinesterase enzymatic activity and deposition of amyloid-β. Treatment with PBT-2 significantly improved behavioural deficits, biochemical profiles, cellular damage, and curbed the deposition of APP in zinc-induced senescent mice. These findings suggest that PBT-2, acting as a metal protein attenuating compound, may be helpful in the prevention of AD or alleviation of ageing.

Keywords

Ageing Zinc Mitochondrial dysfunction Oxidative stress Metal ionophore 

References

  1. Adlard PA, Cherny RA, Finkelstein DI, Gautier E, Robb E, Cortes M et al (2008) Rapid restoration of cognition in Alzheimer’s transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Abeta. Neuron 59(1):43–55CrossRefPubMedGoogle Scholar
  2. Adlard PA, Parncutt JM, Finkelstein DI, Bush AI (2010) Cognitive loss in zinc transporter-3 knock-out mice: a phenocopy for the synaptic and memory deficits of Alzheimer’s disease? J Neurosci 30(5):1631–1636CrossRefPubMedGoogle Scholar
  3. Armstrong C, Leong W, Lees GJ (2001) Comparative effects of metal chelating agents on the neuronal cytotoxicity induced by copper (Cu + 2), iron (Fe + 3) and zinc in the hippocampus. Brain Res 892(1):51–62CrossRefPubMedGoogle Scholar
  4. Balla C, Maertens de Noordhout A, Pepin JL (2014) Motor cortex excitability changes in mild Alzheimer’s disease are reversed by donepezil. Dement Geriatr Cogn Disord 38(3–4):264–270CrossRefPubMedGoogle Scholar
  5. Berman SB, Hastings TG (1999) Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson’s disease. J Neurochem 73(3):1127–1137CrossRefPubMedGoogle Scholar
  6. Beyer N, Coulson DT, Heggarty S, Ravid R, Hellemans J, Irvine GB, Johnston JA (2012) Zinc transporter mRNA levels in Alzheimer’s disease postmortem brain. J Alzheimers Dis 29(4):863–873PubMedGoogle Scholar
  7. Crouch PJ, Harding SM, White AR, Camakaris J, Bush AI, Masters CL (2008) Mechanisms of A beta mediated neurodegeneration in Alzheimer’s disease. Int J Biochem Cell Biol 40(2):181–198CrossRefPubMedGoogle Scholar
  8. Cui X, Zuo P, Zhang Q, Li X, Hu Y, Long J, Packer L, Liu J (2006) Chronic systemic d-galactose exposure induces memory loss, neurodegeneration, and oxidative damage in mice: protective effects of R-alpha-lipoic acid. J Neurosci Res 83(8):1584–1590CrossRefPubMedGoogle Scholar
  9. Dineley KE, Votyakova TV, Reynolds IJ (2003) Zinc inhibition of cellular energy production: implications for mitochondria and neurodegeneration. J Neurochem 85(3):563–570CrossRefPubMedGoogle Scholar
  10. Dineley KE, Richards LL, Votyakova TV, Reynolds IJ (2005) Zinc causes loss of membrane potential and elevates reactive oxygen species in rat brain mitochondria. Mitochondrion 5(1):55–65CrossRefPubMedGoogle Scholar
  11. Donnelly PS, Caragounis A, Du T, Laughton KM, Volitakis I, Cherny RA, Sharples RA, Hill AF, Li QX, Masters CL, Barnham KJ, White AR (2008) Selective intracellular release of copper and zinc ions from bis(thiosemicarbazonato) complexes reduces levels of Alzheimer disease amyloid-beta peptide. J Biol Chem 283(8):4568–4577CrossRefPubMedGoogle Scholar
  12. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77CrossRefPubMedGoogle Scholar
  13. Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95CrossRefPubMedGoogle Scholar
  14. Farooqui AA (2009) Hot topics in neural membrane lipidology. Springer, New YorkCrossRefGoogle Scholar
  15. Faux NG, Ritchie CW, Gunn A, Rembach A, Tsatsanis A, Bedo J (2010) PBT2 rapidly improves cognition in Alzheimer’s Disease: additional phase II analyses. J Alzheimers Dis 20(2):509–516PubMedGoogle Scholar
  16. Gao B, Li K, Wei YY, Zhang J, Li J, Zhang L, Gao JP, Li YY, Huang LG, Lin P, Wei YQ (2014) Zinc finger protein 637 protects cells against oxidative stress-induced premature senescence by mTERT-mediated telomerase activity and telomere maintenance. Cell Death Dis 5:e1334CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gomes LM, Vieira RP, Jones MR, Wang MC, Dyrager C, Souza-Fagundes EM (2014) 8-Hydroxyquinoline Schiff-base compounds as antioxidants and modulators of copper-mediated Aβ peptide aggregation. J Inorg Biochem 139:106–116CrossRefPubMedGoogle Scholar
  18. Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177(2):751–766PubMedGoogle Scholar
  19. Greenough MA, Camakaris J, Bush AI (2013) Metal dyshomeostasis and oxidative stress in Alzheimer’s disease. Neurochem Int 62(5):540–555CrossRefPubMedGoogle Scholar
  20. Hao L, Huang H, Gao J, Marshall C, Chen Y, Xiao M (2014) The influence of gender, age and treatment time on brain oxidative stress and memory impairment induced by d-galactose in mice. Neurosci Lett 571:45–49CrossRefPubMedGoogle Scholar
  21. Hoke DE, Tan JL, Ilaya NT, Culvenor JG, Smith SJ, White AR, Masters CL, Evin GM (2005) In vitro gamma-secretase cleavage of the Alzheimer’s amyloid precursor protein correlates to a subset of presenilin complexes and is inhibited by zinc. FEBS J 272(21):5544–5557CrossRefPubMedGoogle Scholar
  22. Hua X, Lei M, Zhang Y, Ding J, Han Q, Hu G, Xiao M (2007) Long-term d-galactose injection combined with ovariectomy serves as a new rodent model for Alzheimer’s disease. Life Sci 80(20):1897–1905CrossRefPubMedGoogle Scholar
  23. King TE (1967) Preparation of succinate dehydrogenase and reconstitution of succinate oxidase. Methods Enzymol 10:322–331CrossRefGoogle Scholar
  24. King TE, Howard RL (1967) Preparations and properties of soluble NADH dehydrogenases from cardiac muscle. Methods Enzymol 10:275–284CrossRefGoogle Scholar
  25. Kumar A, Prakash A, Dogra S (2010) Naringin alleviates cognitive impairment, mitochondrial dysfunction and oxidative stress induced by d-galactose in mice. Food Chem Toxicol 48(2):626–632CrossRefPubMedGoogle Scholar
  26. Lammich S, Kojro E, Postina R, Gilbert S, Pfeiffer R, Jasionowski M, Haass C, Fahrenholz F (1999) Constitutive and regulated alpha-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proc Natl Acad Sci USA 96(7):3922–3927CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lee JY, Cole TB, Palmiter RD, Suh SW, Koh JY (2002) Contribution by synaptic zinc to the gender-disparate plaque formation in human Swedish mutant APP transgenic mice. Proc Natl Acad Sci USA 99(11):7705–7710CrossRefPubMedPubMedCentralGoogle Scholar
  28. Li M, Ouyang W, Wu X, Zheng Y, Wei Y, An L (2014) Kinetin inhibits apoptosis of aging spleen cells induced by d-galactose in rats. J Vet Sci 15(3):353–359CrossRefPubMedPubMedCentralGoogle Scholar
  29. Linkous DH, Flinn JM, Koh JY, Lanzirotti A, Bertsch PM, Jones BF, Giblin LJ, Frederickson CJ (2008) Evidence that the ZNT3 protein controls the total amount of elemental zinc in synaptic vesicles. J Histochem Cytochem 56(1):3–6CrossRefPubMedPubMedCentralGoogle Scholar
  30. Liu Y, Peterson DA, Kimura H, Schubert D (1997) Mechanisms of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolinium bromide (MTT) reduction. J Neurochem 69:581–593CrossRefPubMedGoogle Scholar
  31. Luck H (1971) Catalase. In: Bergmeyer HU (ed) Methods of enzyme analysis. Academic press, New York, pp 885–893Google Scholar
  32. Mattson MP (2007) Calcium and neurodegeneration. Aging Cell 6(3):337–350CrossRefPubMedGoogle Scholar
  33. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11(1):47–60CrossRefPubMedGoogle Scholar
  34. Moyer JR Jr, Furtak SC, McGann JP, Brown TH (2011) Aging-related changes in calcium-binding proteins in rat perirhinal cortex. Neurobiol Aging 32(9):1693–1706CrossRefPubMedPubMedCentralGoogle Scholar
  35. Navarro A, Boveris A (2010) Brain mitochondrial dysfunction in aging, neurodegeneration, and Parkinson’s disease. Front Aging Neurosci 2:34PubMedPubMedCentralGoogle Scholar
  36. Oliveira BF, Nogueira-Machado JA, Chaves MM (2010) The role of oxidative stress in the aging process. ScientificWorldJournal 10:1121–1128CrossRefPubMedGoogle Scholar
  37. Pan E, Zhang XA, Huang Z, Krezel A, Zhao M, Tinberg CE, Lippard SJ, McNamara JO (2011) Vesicular zinc promotes presynaptic and inhibits postsynaptic long-term potentiation of mossy fiber-CA3 synapse. Neuron 71(6):1116–1126CrossRefPubMedPubMedCentralGoogle Scholar
  38. Panza F, Solfrizzi V, Frisardi V, Imbimbo BP, Capurso C, D’Introno A (2009) Beyond the neurotransmitter-focused approach in treating Alzheimer’s disease: drugs targeting beta-amyloid and tau protein. Aging Clin Exp Res 21(6):386–406CrossRefPubMedGoogle Scholar
  39. Poulsen HE (2005) Oxidative DNA modifications. Exp Toxicol Pathol 57(Suppl 1):161–169CrossRefPubMedGoogle Scholar
  40. Prakash A, Kumar A (2013) Pioglitazone alleviates the mitochondrial apoptotic pathway and mito-oxidative damage in the d-galactose-induced mouse model. Clin Exp Pharmacol Physiol 40(9):644–651CrossRefPubMedGoogle Scholar
  41. Sastry KV, Moudgal RP, Mohan J, Tyagi JS, Rao GS (2002) Spectrophotometric determination of serum nitrite and nitrate by copper-cadmium alloy. Anal Biochem 306(1):79–82CrossRefPubMedGoogle Scholar
  42. Schrag M, Mueller C, Oyoyo U, Smith MA, Kirsch WM (2011) Iron, zinc and copper in the Alzheimer’s disease brain: a quantitative meta-analysis. Some insight on the influence of citation bias on scientific opinion. Prog Neurobiol 94(3):296–306CrossRefPubMedPubMedCentralGoogle Scholar
  43. Sensi SL, Paoletti P, Bush AI, Sekler I (2009) Zinc in the physiology and pathology of the CNS. Nat Rev Neurosci 10(11):780–791CrossRefPubMedGoogle Scholar
  44. Singh KK (2006) Mitochondria damage checkpoint, aging, and cancer. Ann N Y Acad Sci 1067:182–190CrossRefPubMedGoogle Scholar
  45. Sottocasa GL, Kuylenstierna B, Ernster L, Bergstrand A (1967) An electron-transport system associated with the outer membrane of liver mitochondria. A biochemical and morphological study. J Cell Biol 32(2):415–438CrossRefPubMedPubMedCentralGoogle Scholar
  46. Tang T, He B (2013) Treatment of d-galactose induced mouse aging with Lycium barbarum polysaccharides and its mechanism study. Afr J Tradit Complement Altern Med 10(4):12–17PubMedPubMedCentralGoogle Scholar
  47. Tõugu V, Karafin A, Zovo K, Chung RS, Howells C, West AK, Palumaa P (2009) Zn(II)- and Cu(II)-induced non-fibrillar aggregates of amyloid-beta (1–42) peptide are transformed to amyloid fibrils, both spontaneously and under the influence of metal chelators. J Neurochem 110(6):1784–1795CrossRefPubMedGoogle Scholar
  48. Wärmländer S, Tiiman A, Abelein A, Luo J, Jarvet J, Söderberg KL, Danielsson J, Gräslund A (2013) Biophysical studies of the amyloid β-peptide: interactions with metal ions and small molecules. ChemBioChem 14(14):1692–1704CrossRefPubMedGoogle Scholar
  49. Wills ED (1966) Mechanisms of lipid peroxide formation in animal tissues. Biochem J 99(3):667–676CrossRefPubMedPubMedCentralGoogle Scholar
  50. Xiong Y, Jing XP, Zhou XW, Wang XL, Yang Y, Sun XY, Qiu M, Cao FY, Lu YM, Liu R, Wang JZ (2013) Zinc induces protein phosphatase 2A inactivation and tau hyperphosphorylation through Src dependent PP2A (tyrosine 307) phosphorylation. Neurobiol Aging 34(3):745–756CrossRefPubMedGoogle Scholar
  51. Zhan GJ, Yang NA, Xiao BJ (2014) The effect of Wu-He Dipsacus asper on mice-aging model induced by d-galactose. Zhongguo Ying Yong Sheng Li Xue Za Zhi 30(2):174–177PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Kanchan Bharti
    • 1
  • Abu Bakar Abdul Majeed
    • 2
    • 3
  • Atish Prakash
    • 1
    • 2
    • 3
  1. 1.Department of PharmacologyISF College of PharmacyMogaIndia
  2. 2.Brain Degeneration and Therapeutics Group, Pharmaceutical & Life Sciences Community of Research (CoRe)UniversitiTeknologi MARA (UiTM)Shah AlamMalaysia
  3. 3.Brain Research Laboratory, Faculty of PharmacyUniversiti Teknologi MARA (UiTM)Bandar Puncak AlamMalaysia

Personalised recommendations