, Volume 28, Issue 4, pp 783–789 | Cite as

Fusaric acid induces a notochord malformation in zebrafish via copper chelation

  • Emily S. Yin
  • Malika Rakhmankulova
  • Kaury Kucera
  • Jose Guedes de Sena Filho
  • Carolina E. Portero
  • Alexandra Narváez-Trujillo
  • Scott A. Holley
  • Scott A. Strobel


Over a thousand extracts were tested for phenotypic effects in developing zebrafish embryos to identify bioactive molecules produced by endophytic fungi. One extract isolated from Fusarium sp., a widely distributed fungal genus found in soil and often associated with plants, induced an undulated notochord in developing zebrafish embryos. The active compound was isolated and identified as fusaric acid. Previous literature has shown this phenotype to be associated with copper chelation from the active site of lysyl oxidase, but the ability of fusaric acid to bind copper ions has not been well described. Isothermal titration calorimetry revealed that fusaric acid is a modest copper chelator with a binding constant of 4.4 × 105 M−1. These results shed light on the toxicity of fusaric acid and the potential teratogenic effects of consuming plants infected with Fusarium sp.


Copper chelation Endophytic fungi Fusaric acid Natural products Zebrafish notochord 



This project was supported by an HHMI Professor’s Grant and NSF grant OISE 853408 to S.A.S. We would like to thank Patrick McMillen for recording images of zebrafish embryos, Michael Takase for crystal structure elucidation, Sunil Kumar for ITC guidance and the Endophyte Collection Quito Catolica (CEQCA) for cataloguing the microorganisms that produced the extracts tested here. Endophytes were isolated from plants collected with permission of the Ministerio del Ambiente of Ecuador.


  1. Abrar M, Anjum FM, Butt MS et al (2013) Aflatoxins: biosynthesis, occurrence, toxicity, and remedies. Crit Rev Food Sci Nutr 53:862–874PubMedCrossRefGoogle Scholar
  2. Anderson C, Bartlett SJ, Gansner JM et al (2007) Chemical genetics suggests a critical role for lysyl oxidase in zebrafish notochord morphogenesis. Mol BioSyst 3:51–59PubMedCentralPubMedCrossRefGoogle Scholar
  3. Asano M, Hidaka H (1977) Relaxation of isolated aorta of the rabbit by picolinic acids. Br J Pharmacol 61:263–269PubMedCentralPubMedCrossRefGoogle Scholar
  4. Crawford AD, Liekens S, Kamuhabwa AR et al (2011) Zebrafish bioassay-guided natural product discovery: isolation of angiogenesis inhibitors from East African medicinal plants. PLoS ONE 6:e14694PubMedCentralPubMedCrossRefGoogle Scholar
  5. Curzon G (1977) The biochemistry of the basal ganglia and Parkinson’s disease. Postgrad Med J 53:719–725PubMedCentralPubMedCrossRefGoogle Scholar
  6. Dove S (2004) Picolinic acids as inhibitors of dopamine beta-monooxygenase: QSAR and putative binding site. Arch Pharm (Weinheim) 337:645–653CrossRefGoogle Scholar
  7. EFSA Panel on Contaminants in the Food Chain (2012) Scientific opinion on the risks for public and animal health related to the presence of citrinin in food and feed. EFSA J 10:2605Google Scholar
  8. Ellis K, Bagwell J, Bagnat M (2013) Notochord vacuoles are lysosome-related organelles that function in axis and spine morphogenesis. J Cell Biol 200:667–679PubMedCentralPubMedCrossRefGoogle Scholar
  9. Endo A, Kuroda M (1976) Citrinin, an inhibitor of cholesterol synthesis. J Antibiot 29:841–843PubMedCrossRefGoogle Scholar
  10. Finch SC, Thom ER, Babu JV, Hawkes AD, Waugh CD (2013) The evaluation of fungal endophyte toxin residues in milk. N Z Vet J 61:11–17PubMedCrossRefGoogle Scholar
  11. Flajs D, Peraica M (2009) Toxicological properties of citrinin. Arh Hig Rada Toksikol 60:457–464PubMedCrossRefGoogle Scholar
  12. Fushida-Takemura H, Fukuda M, Maekawa N et al (1996) Detection of lysyl oxidase gene expression in rat skin during wound healing. Arch Dermatol Res 288:7–10PubMedCrossRefGoogle Scholar
  13. Gansner JM, Mendelsohn BA, Hultman KA et al (2007) Essential role of lysyl oxidases in notochord development. Dev Biol 307:202–213PubMedCentralPubMedCrossRefGoogle Scholar
  14. Gao S, Chen K, Zhao Y, Rich CB et al (2005) Transcriptional and posttranscriptional inhibition of lysyl oxidase expression by cigarette smoke condensate in cultured rat fetal lung fibroblasts. Toxicol Sci 87:197–203PubMedCentralPubMedCrossRefGoogle Scholar
  15. Gnonlonfin GJ, Hell K, Adjovi Y et al (2013) A review on aflatoxin contamination and its implications in the developing world: a sub-Saharan African perspective. Crit Rev Food Sci Nutr 53:349–365PubMedCrossRefGoogle Scholar
  16. He L, Yan J-B, Gui X-X, Song W-D (2007) Bis(5-n-butylpyridine-2-carboxylato)-copper(II). Acta Cryst Sect E 63:1649CrossRefGoogle Scholar
  17. Hidaka H (1971) Fusaric (5-butylpicolinic) acid, an inhibitor of dopamine beta-hydroxylase, affects serotonin and noradrenaline. Nature 231:54–55PubMedCrossRefGoogle Scholar
  18. Hidaka H, Nagatsu T, Takeya K, Takeuchi T, Suda H (1969) Fusaric acid, a hypotensive agent produced by fungi. J Antibiot 22:228–230PubMedCrossRefGoogle Scholar
  19. Hidaka H, Asano T, Takemoto N (1973) Analogues of fusaric (5-butylpicolinic) acid as potent inhibitors of dopamine -hydroxylase. Mol Pharmacol 9:172–177PubMedGoogle Scholar
  20. Howe K, Clark MD, Torroja CF et al (2013) The Zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503PubMedCentralPubMedCrossRefGoogle Scholar
  21. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310PubMedCrossRefGoogle Scholar
  22. Kountz WB, Pearson EF, Koenig KF (1932) Observations on intrapleural pressure and its influence on the relative circulation rate in emphysema. J Clin Investig 11:1281–1291PubMedCentralPubMedCrossRefGoogle Scholar
  23. Lokey RS (2003) Forward chemical genetics: progress and obstacles on the path to a new pharmacopoeia. Curr Opin Chem Biol 7:91–96PubMedCrossRefGoogle Scholar
  24. Maki JM, Sormunen R, Lippo S, Kaarteenaho-Wiik R, Soininen R, Myllyharju J (2005) Lysyl oxidase is essential for normal development and function of the respiratory system and for the integrity of elastic and collagen fibers in various tissues. Am J Pathol 167:927–936PubMedCentralPubMedCrossRefGoogle Scholar
  25. Muller P (2009) Practical suggestions for better crystal structures. Crystallogr Rev 15:57–83CrossRefGoogle Scholar
  26. Murphey RD, Zon LI (2006) Small molecule screening in the zebrafish. Methods 39:255–261PubMedCrossRefGoogle Scholar
  27. Pan JH, Lin YC, Tan N, Gu YC (2010) Cu(II): a “signaling molecule” of the mangrove endophyte Fusarium oxysporum ZZF51? Biometals 23:1053–1060PubMedCrossRefGoogle Scholar
  28. Pandey RS, Sreenivas KN, Patil NM, Swamy HS (1981) Dopamine beta-hydroxylase inhibition in a patient with Wilson’s disease and manic symptoms. Am J Psychiatr 138:1628–1629PubMedCrossRefGoogle Scholar
  29. Papachroni KK, Piperi C, Levidou G et al (2010) Lysyl oxidase interacts with AGE signalling to modulate collagen synthesis in polycystic ovarian tissue. J Cell Mol Med 14:2460–2469PubMedCentralPubMedCrossRefGoogle Scholar
  30. Park DL, Troxell TC (2002) US perspective on mycotoxin regulatory issues. Adv Exp Med Biol 504:277–285PubMedCrossRefGoogle Scholar
  31. Placinta CM, D’Mello JPF, Macdonald AMC (1999) A review of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins. Anim Feed Sci Technol 78:21–37CrossRefGoogle Scholar
  32. Porter JK (1993) Ergot alkaloids and alkaloids from other endophytes, responsible for causing toxic syndrome in cattle after eating contaminated grass. Prikl Biokhim Mikrobiol 29:51–55PubMedGoogle Scholar
  33. Porter JK, Wray EM, Rimando AM, Stancel PC, Bacon CW, Voss KA (1996) Lactational passage of fusaric acid from the feed of nursing dams to the neonate rat and effects on pineal neurochemistry in the F1 and F2 generations at weaning. J Toxicol Environ Health 49:161–175PubMedCrossRefGoogle Scholar
  34. Santoriello C, Zon LI (2012) Hooked! modeling human disease in zebrafish. J Clin Invest 122:2337–2343PubMedCentralPubMedCrossRefGoogle Scholar
  35. Sheldrick GM (1990) Phase annealing in SHELX-90: direct methods for larger structures. Acta Crystallogr A 46:467–473CrossRefGoogle Scholar
  36. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112–122PubMedCrossRefGoogle Scholar
  37. Shimshoni JA, Cuneah O, Sulyok M et al (2013) Mycotoxins in corn and wheat silage in Israel. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 30:1614–1625PubMedCrossRefGoogle Scholar
  38. Siegel RC, Pinnell SR, Martin GR (1970) Cross-linking of collagen and elastin. Properties of lysyl oxidase. Biochemistry 9:4486–4492PubMedCrossRefGoogle Scholar
  39. Soskel NT, Watanabe S, Sandberg LB (1984) Mechanisms of lung injury in the copper-deficient hamster model of emphysema. Chest 85:70S–73SPubMedCrossRefGoogle Scholar
  40. Stemple DL (2005) Structure and function of the notochord: an essential organ for chordate development. Development 132:2503–2512PubMedCrossRefGoogle Scholar
  41. Swamy HV, Smith TK, MacDonald EJ (2004) Effects of feeding blends of grains naturally contaminated with Fusarium mycotoxins on brain regional neurochemistry of starter pigs and broiler chickens. J Anim Sci 82:2131–2139PubMedGoogle Scholar
  42. Tilton F, La Du JK, Vue M, Alzarban N, Tanguay RL (2006) Dithiocarbamates have a common toxic effect on zebrafish body axis formation. Toxicol Appl Pharmacol 216:55–68PubMedCrossRefGoogle Scholar
  43. Turnbull WB, Daranas AH (2003) On the value of c: can low affinity systems be studied by isothermal titration calorimetry? J Am Chem Soc 125:14859–14866PubMedCrossRefGoogle Scholar
  44. van Egmond HP, Schothorst RC, Jonker MA (2007) Regulations relating to mycotoxins in food: perspectives in a global and European context. Anal Bioanal Chem 389:147–157PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Emily S. Yin
    • 1
  • Malika Rakhmankulova
    • 1
  • Kaury Kucera
    • 1
  • Jose Guedes de Sena Filho
    • 1
    • 3
  • Carolina E. Portero
    • 4
  • Alexandra Narváez-Trujillo
    • 4
  • Scott A. Holley
    • 2
  • Scott A. Strobel
    • 1
  1. 1.Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUSA
  2. 2.Department of Molecular, Cellular and Developmental BiologyYale UniversityNew HavenUSA
  3. 3.Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) – Coastal TablelandAracajuBrazil
  4. 4.Laboratorio de Biotecnologia VegetalPontificia Universidad Católica del EcuadorQuitoEcuador

Personalised recommendations