Advertisement

BioMetals

, Volume 28, Issue 2, pp 425–430 | Cite as

Reactions of cytotoxic metallodrugs with lysozyme in pure DMSO explored through UV–Vis absorption spectroscopy and ESI MS

  • Tiziano Marzo
  • Aleksandar Savić
  • Lara Massai
  • Elena Michelucci
  • Tibor J. Sabo
  • Sanja Grguric-Šipka
  • Luigi Messori
Article

Abstract

The reactions of four representative metallodrugs with the model protein HEWL were investigated within a non-aqueous environment-i.e. in pure DMSO- through UV–Vis absorption spectroscopy and ESI MS analysis. Notably, formation of a variety of metallodrug-protein adducts was clearly documented. This is the first example for this kind of protein metalation reactions carried out within a pure organic solvent. It is shown that the applied solution conditions greatly affect the nature of the formed adducts, this being well accounted for by the fact that the overall protein conformation is greatly perturbed within pure DMSO; in addition, the activation profiles of the studied metallodrugs are also highly dependent on the nature of the solvent. The implications of these results are discussed.

Keywords

Anticancer complexes Protein interaction Lysozyme ESI-MS Metallodrugs 

Notes

Acknowledgments

Beneficentia Stiftung, CIRCMSB and COST ACTION CM-1105 are gratefully acknowledged for generous financial support.

References

  1. Ang WH, Casini A, Sava G, Dyson PJ (2011) Organometallic ruthenium-based antitumor compounds with novel modes of action. J Organomet Chem 696:989–998CrossRefGoogle Scholar
  2. Casini A, Guerri A, Gabbiani C, Messori L (2008) Biophysical characterisation of adducts formed between anticancer metallodrugs and selected proteins: new insights from X-ray diffraction and mass spectrometry studies. J Inorg Biochem 102:995–1006CrossRefPubMedGoogle Scholar
  3. Chin JT, Wheeler SL, Klibanov AM (1994) On protein solubility in organic solvent. Biotechnol Bioeng 44:140–145CrossRefPubMedGoogle Scholar
  4. Clarke MJ, Zhu F, Frasca DR (1999) Non-platinum chemotherapeutic metallopharmaceuticals. Chem Rev 99:2511–2533CrossRefPubMedGoogle Scholar
  5. Evangelou AM (2002) Vanadium in cancer treatment. Crit Rev Oncol Hematol 42:249–265CrossRefPubMedGoogle Scholar
  6. Gabbiani C, Magherini F, Modesti A, Messori L (2010) Proteomic and metallomic strategies for understanding the mode of action of anticancer metallodrugs. Anticancer Agents Med Chem. 10:324-337.Google Scholar
  7. Gabbiani C, Casini A, Kelter G, Cocco F, Cinellu MA, Fiebig HH, Messori L (2011) Mechanistic studies on two dinuclear organogold(iii) compounds showing appreciable antiproliferative properties and a high redox stability. Metallomics. 3:1318–1323CrossRefPubMedGoogle Scholar
  8. Gabbiani C, Massai L, Scaletti F, Michelucci E, Maiore L, Cinellu MA, Messori L (2012) Protein metalation by metal-based drugs: reactions of cytotoxic gold compounds with cytochrome c and lysozyme. J Biol Inorg Chem 17:1293–1302CrossRefPubMedGoogle Scholar
  9. Gasser G, Ott I, Metzler-Nolte N (2011) Organometallic anticancer compounds. J Med Chem 54:3–25CrossRefPubMedCentralPubMedGoogle Scholar
  10. Hambley TW (2007) Chemistry: metal-based therapeutics. Science 318:1392–1393CrossRefPubMedGoogle Scholar
  11. Hartinger CG, Zorbas-Seifried S, Jakupec MA, Kynast B, Zorbas H, Keppler BK (2006) From bench to bedside—preclinical and early clinical development of the anticancer agent indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019 or FFC14A). J Inorg Biochem 100:891–904CrossRefPubMedGoogle Scholar
  12. Maiore L, Cinellu MA, Nobili S, Landini I, Mini E, Gabbiani C, Messori L (2012) Gold(III) complexes with 2-substituted pyridines as experimental anticancer agents: solution behavior, reactions with model proteins, antiproliferative properties. J Inorg Biochem 108:123–127CrossRefPubMedGoogle Scholar
  13. Mojić M, Savić A, Arion VB, Bulatović M, Poljarević JM, Miljković DJ, Sabo TJ, Mijatović S, Maksimović-Ivanić D, Grgurić-Šipka S (2014) Synthesis, X-ray structure and strong in vitro cytotoxicity of novel organoruthenium complexes. J Organomet Chem 749:142–149CrossRefGoogle Scholar
  14. Pantelić N, Zmejkovski BB, Trifunović-Macedoljan J, Savić A, Stanković D, Damjanović A, Juranić Z, Kaluđerović GN, Sabo TJ (2013) Gold(III) complexes with esters of cyclohexyl-functionalized ethylenediamine-N, N′-diacetate. J Inorg Biochem 128:146–153CrossRefPubMedGoogle Scholar
  15. Parro T, Medrano MA, Cubo L, Muñoz-Galván S, Carnero A, Navarro-Ranninger C, Quiroga AG (2013) The second generation of iodido complexes: trans-[PtI2(amine)(amine′)] bearing different aliphatic amines. J Inorg Biochem 127:182–187CrossRefPubMedGoogle Scholar
  16. Rosenberg B, VanCamp L, Trosko JE, Mansour VH (1969) Platinum compounds: a new class of potent antitumour agents. Nature 222:385–386CrossRefPubMedGoogle Scholar
  17. Savić A, Filipović L, Aranđelović S, Dojčinović B, Radulović S, Sabo TJ, Grgurić-Šipka S (2014) Synthesis, characterization and cytotoxic activity of novel platinum(II) iodido complexes. Eur J Med Chem 82:372–384CrossRefPubMedGoogle Scholar
  18. Van Rijt SH, Sadler PJ (2009) Current applications and future potential for bioinorganic chemistry in the development of anticancer drugs. Drug Discov Today 14:1089–1097CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Tiziano Marzo
    • 1
  • Aleksandar Savić
    • 2
  • Lara Massai
    • 1
  • Elena Michelucci
    • 3
  • Tibor J. Sabo
    • 2
  • Sanja Grguric-Šipka
    • 2
  • Luigi Messori
    • 1
  1. 1.(MetMed) Department of Chemistry “U. Schiff”University of FlorenceSesto Fiorentino, FlorenceItaly
  2. 2.Faculty of ChemistryUniversity of BelgradeBelgradeSerbia
  3. 3.Mass Spectrometry Center (CISM)University of FlorenceSesto Fiorentino, FlorenceItaly

Personalised recommendations