Skip to main content
Log in

Beryllium is an inhibitor of cellular GSK-3β that is 1,000-fold more potent than lithium

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Glycogen synthase kinase 3β (GSK-3β) is a key regulator in signaling networks that control cell proliferation, metabolism, development, and other processes. Lithium chloride is a GSK-3 family inhibitor that has been a mainstay of in vitro and in vivo studies for many years. Beryllium salt has the potential to act as a lithium-like inhibitor of GSK-3, but it is not known whether this agent is effective under physiologically relevant conditions. Here we show that BeSO4 inhibits endogenous GSK-3β in cultured human cells. Exposure to 10 µM Be2+ produced a decrease in GSK-3β kinase activity that was comparable to that produced by 10 mM Li+, indicating that beryllium is about 1,000-fold more potent than the classical inhibitor when treating intact cells. There was a statistically significant dose-dependent reduction in specific activity of GSK-3β immunoprecipitated from cells that had been treated with either agent. Lithium inhibited GSK-3β kinase activity directly, and it also caused GSK-3β in cells to become phosphorylated at serine-9 (Ser-9), a post-translational modification that occurs as part of a well-known positive feedback loop that suppresses the kinase activity. Beryllium also inhibited the kinase directly, but unlike lithium it had little effect on Ser-9 phosphorylation in the cell types tested, suggesting that alternative modes of feedback inhibition may be elicited by this agent. These results indicate that beryllium, like lithium, can induce perturbations in the GSK-3β signaling network of treated cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Boehme KA, Kulikov R, Blattner C (2008) p53 stabilization in response to DNA damage requires Akt/PKB and DNA-PK. Proc Natl Acad Sci USA 105:7785–7790

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng K, Creacy S, Larner J (1983) ‘Insulin-like’ effects of lithium ion on isolated rat adipocytes. II. Specific activation of glycogen synthase. Mol Cell Biochem 56:183–189

    CAS  PubMed  Google Scholar 

  • Coates SS, Lehnert BE, Sharma S, Kindell SM, Gary RK (2007) Beryllium induces premature senescence in human fibroblasts. J Pharmacol Exp Ther 322:70–79

    Article  CAS  PubMed  Google Scholar 

  • Cohen P, Frame S (2001) The renaissance of GSK3. Nat Rev Mol Cell Biol 2:769–776

    Article  CAS  PubMed  Google Scholar 

  • Cole AR (2013) Glycogen synthase kinase 3 substrates in mood disorders and schizophrenia. FEBS J 280:5213–5227

    Article  CAS  PubMed  Google Scholar 

  • Cole A, Frame S, Cohen P (2004) Further evidence that the tyrosine phosphorylation of glycogen synthase kinase-3 (GSK3) in mammalian cells is an autophosphorylation event. Biochem J 377:249–255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ding VW, Chen RH, McCormick F (2000) Differential regulation of glycogen synthase kinase 3β by insulin and Wnt signaling. J Biol Chem 275:32475–32481

    Article  CAS  PubMed  Google Scholar 

  • Doble BW, Woodgett JR (2003) GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 116:1175–1186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fang X, Yu SX, Lu Y, Bast RC Jr, Woodgett JR, Mills GB (2000) Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc Natl Acad Sci USA 97:11960–11965

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Force T, Woodgett JR (2009) Unique and overlapping functions of GSK-3 isoforms in cell differentiation and proliferation and cardiovascular development. J Biol Chem 284:9643–9647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gorjala P, Gary RK (2010) Beryllium sulfate induces p21CDKN1A expression and a senescence-like cell cycle arrest in susceptible cancer cell types. Biometals 23:1061–1073

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Horn RS, Walaas O, Walaas E (1973) The influence of sodium, potassium and lithium on the response of glycogen synthetase I to insulin and epinephrine in the isolated rat diaphragm. Biochim Biophys Acta 313:296–309

    Article  CAS  PubMed  Google Scholar 

  • Jope RS (2003) Lithium and GSK-3: one inhibitor, two inhibitory actions, multiple outcomes. Trends Pharmacol Sci 24:441–443

    Article  CAS  PubMed  Google Scholar 

  • Jope RS, Johnson GV (2003) The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 29:95–102

    Article  Google Scholar 

  • Klein PS, Melton DA (1996) A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci USA 93:8455–8459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kulikov R, Boehme KA, Blattner C (2005) Glycogen synthase kinase 3-dependent phosphorylation of Mdm2 regulates p53 abundance. Mol Cell Biol 25:7170–7180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lehnert NM, Gary RK, Marrone BL, Lehnert BE (2001) Inhibition of normal human lung fibroblast growth by beryllium. Toxicology 160:119–127

    Article  CAS  PubMed  Google Scholar 

  • Li L, Kozlowski K, Wegner B, Rashid T, Yeung T, Holmes C, Ballermann BJ (2007) Phosphorylation of TIMAP by glycogen synthase kinase-3beta activates its associated protein phosphatase 1. J Biol Chem 282:25960–25969

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Liang Z, Shi J, Yin D, El-Akkad E, Grundke-Iqbal I, Iqbal K, Gong CX (2006) PKA modulates GSK-3beta- and cdk5-catalyzed phosphorylation of tau in site- and kinase-specific manners. FEBS Lett 580:6269–6274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mao CD, Hoang P, DiCorleto PE (2001) Lithium inhibits cell cycle progression and induces stabilization of p53 in bovine aortic endothelial cells. J Biol Chem 276:26180–26188

    Article  CAS  PubMed  Google Scholar 

  • Maurer U, Preiss F, Brauns-Schubert P, Schlicher L, Charvet C (2014) GSK-3—at the crossroads of cell death and survival. J Cell Sci 127:1369–1378

    Article  CAS  PubMed  Google Scholar 

  • Niles AL, Moravec RA, Eric Hesselberth P, Scurria MA, Daily WJ, Riss TL (2007) A homogeneous assay to measure live and dead cells in the same sample by detecting different protease markers. Anal Biochem 366:197–206

    Article  CAS  PubMed  Google Scholar 

  • Olsher U, Izatt RM, Bradshaw JS, Dalley NK (1991) Coordination chemistry of lithium ion: a crystal and molecular structure review. Chem Rev 91:137–164

    Article  CAS  Google Scholar 

  • Pittet PA, Elbaze G, Helm L, Merbach AE (1990) Tetrasolventoberyllium(II): high-pressure evidence for a sterically controlled solvent-exchange-mechanism crossover. Inorg Chem 29:1936–1942

    Article  CAS  Google Scholar 

  • Ryves WJ, Harwood AJ (2001) Lithium inhibits glycogen synthase kinase-3 by competition for magnesium. Biochem Biophys Res Commun 280:720–725

    Article  CAS  PubMed  Google Scholar 

  • Ryves WJ, Dajani R, Pearl L, Harwood AJ (2002) Glycogen synthase kinase-3 inhibition by lithium and beryllium suggests the presence of two magnesium binding sites. Biochem Biophys Res Commun 290:967–972

    Article  CAS  PubMed  Google Scholar 

  • Seo YH, Jung HJ, Shin HT, Kim YM, Yim H, Chung HY, Lim IK, Yoon G (2008) Enhanced glycogenesis is involved in cellular senescence via GSK3/GS modulation. Aging Cell 7:894–907

    Article  CAS  PubMed  Google Scholar 

  • Sheridan CM, Heist EK, Beals CR, Crabtree GR, Gardner P (2002) Protein kinase A negatively modulates the nuclear accumulation of NF-ATc1 by priming for subsequent phosphorylation by glycogen synthase kinase-3. J Biol Chem 277:48664–48676

    Article  CAS  PubMed  Google Scholar 

  • Stambolic V, Ruel L, Woodgett JR (1996) Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr Biol 6:1664–1668

    Article  CAS  PubMed  Google Scholar 

  • Sutherland C, Leighton IA, Cohen P (1993) Inactivation of glycogen synthase kinase-3 beta by phosphorylation: new kinase connections in insulin and growth-factor signalling. Biochem J 296:15–19

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tanji C, Yamamoto H, Yorioka N, Kohno N, Kikuchi K, Kikuchi A (2002) A-kinase anchoring protein AKAP220 binds to glycogen synthase kinase-3beta (GSK-3beta) and mediates protein kinase A-dependent inhibition of GSK-3beta. J Biol Chem 277:36955–36961

    Article  CAS  PubMed  Google Scholar 

  • Turenne GA, Price BD (2001) Glycogen synthase kinase3 beta phosphorylates serine 33 of p53 and activates p53’s transcriptional activity. BMC Cell Biol 2:12. doi:10.1186/1471-2121-2-12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Watcharasit P, Bijur GN, Zmijewski JW, Song L, Zmijewska A, Chen X, Johnson GV, Jope RS (2002) Direct, activating interaction between glycogen synthase kinase-3beta and p53 after DNA damage. Proc Natl Acad Sci USA 99:7951–7955

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Watcharasit P, Bijur GN, Song L, Zhu J, Chen X, Jope RS (2003) Glycogen synthase kinase-3beta (GSK3beta) binds to and promotes the actions of p53. J Biol Chem 278:48872–48879

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ye X, Zerlanko B, Kennedy A, Banumathy G, Zhang R, Adams PD (2007) Downregulation of Wnt signaling is a trigger for formation of facultative heterochromatin and onset of cell senescence in primary human cells. Mol Cell 27:183–196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang F, Phiel CJ, Spece L, Gurvich N, Klein PS (2003) Inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3) in response to lithium: evidence for autoregulation of GSK-3. J Biol Chem 278:33067–33077

    Article  CAS  PubMed  Google Scholar 

  • Zmijewski JW, Jope RS (2004) Nuclear accumulation of glycogen synthase kinase-3 during replicative senescence of human fibroblasts. Aging Cell 3:309–317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Derek Jensen for helpful discussions. This project was supported by grants from the National Institute of General Medical Sciences (P20GM103440), the American Cancer Society (IRG-103719), and a UNLV Faculty Opportunity Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald K. Gary.

Additional information

Swapna R. Mudireddy and Ataur Rahman Mohammed Abdul have contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 177 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mudireddy, S.R., Abdul, A.R.M., Gorjala, P. et al. Beryllium is an inhibitor of cellular GSK-3β that is 1,000-fold more potent than lithium. Biometals 27, 1203–1216 (2014). https://doi.org/10.1007/s10534-014-9783-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-014-9783-y

Keywords

Navigation