, Volume 27, Issue 5, pp 815–828 | Cite as

Lactoferrin, myeloperoxidase, and ceruloplasmin: complementary gearwheels cranking physiological and pathological processes

  • Alexey V. Sokolov
  • Elena T. Zakahrova
  • Valeria A. Kostevich
  • Valeria R. Samygina
  • Vadim B. Vasilyev


Copper-containing plasma protein ceruloplasmin (Cp) forms a complex with lactoferrin (Lf), an iron-binding protein, and with the heme-containing myeloperoxidase (Mpo). In case of inflammation, Lf and Mpo are secreted from neutrophil granules. Among the plasma proteins, Cp seems to be the preferential partner of Lf and Mpo. After an intraperitoneal injection of Lf to rodents, the “Cp–Lf” complex has been shown to appear in their bloodstream. Cp prevents the interaction of Lf with protoplasts of Micrococcus luteus. Upon immunoprecipitation of Cp, the blood plasma becomes depleted of Lf and in a dose-dependent manner loses the capacity to inhibit the peroxidase activity of Mpo, but not the Mpo-catalyzed oxidation of thiocyanate in the (pseudo)halogenating cycle. Antimicrobial effect against E. coli displayed by a synergistic system that includes Lf and Mpo–H2O2–chloride, but not thiocyanate, as the substrate for Mpo is abrogated when Cp is added. Hence, Cp can be regarded as an anti-inflammatory factor that restrains the halogenating cycle and redirects the synergistic system Mpo–H2O2–chloride/thiocyanate to production of hypothiocyanate, which is relatively harmless for the human organism. Structure and functions of the “2Cp–2Lf–Mpo” complex and binary complexes Cp–Lf and 2Cp–Mpo in inflammation are discussed.


Ceruloplasmin Lactoferrin Myeloperoxidase Protein–protein interactions Synergism of antimicrobial proteins Inflammation Thiocyanate Halogenative stress 










This study was supported by RFBR grants № 12-04-00301; 13-04-01191, MK-6062.2014.4 and by the Program “Human Proteome”. The authors are grateful to Professor V. N. Kokryakov for generously providing leukocytes of healthy donors, to Dr. M. N. Berlov for kind assistance in mastering the evaluation of antimicrobial activity of proteins, to Dr. M. O. Pulina and Dr. A. N. Skvortsov for CD-spectra measurement.


  1. Anderson NL, Nance SL, Pearson TW et al (1982) Specific antiserum staining of two-dimensional electrophoretic patterns of human plasma proteins immobilized on nitrocellulose. Electrophoresis 3:135–142CrossRefGoogle Scholar
  2. Bakkenist AR, Wever R, Vulsma T et al (1978) Isolation procedure and some properties of myeloperoxidase from human leucocytes. Biochim Biophys Acta 524:45–54PubMedCrossRefGoogle Scholar
  3. Beers RF Jr, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140PubMedGoogle Scholar
  4. Blair-Johnson M, Fiedler T, Fenna R (2001) Human myeloperoxidase: structure of a cyanide complex and its interaction with bromide and thiocyanate substrates at 1.9 Å resolution. Biochemistry 4:13990–13997CrossRefGoogle Scholar
  5. Borisova AV, Karyakina EE, Cosnier S et al (2009) Current-free deposition of Prussian blue with organic polymers: towards improved stability and mass production of the advanced hydrogen peroxide transducer. Electroanalysis 21:409–414CrossRefGoogle Scholar
  6. Chandler JD, Day BJ (2012) Thiocyanate: a potentially useful therapeutic agent with host defense and antioxidant properties. Biochem Pharmacol 84:1381–1387PubMedCentralPubMedCrossRefGoogle Scholar
  7. Chapman AL, Mocatta TJ, Shiva S et al (2013) Ceruloplasmin is an endogenous inhibitor of myeloperoxidase. J Biol Chem 288:6465–6477PubMedCentralPubMedCrossRefGoogle Scholar
  8. Cooper RA (2013) Inhibition of biofilms by glucose oxidase, lactoperoxidase and guaiacol: the active antibacterial component in an enzyme alginogel. Int Wound J 10:630–637CrossRefGoogle Scholar
  9. Davis BJ (1964) Disc electrophoresis. II. Method and application to human serum proteins. Ann N Y Acad Sci 121:404–427Google Scholar
  10. Delporte C, Zouaoui Boudjeltia K, Noyon C et al (2014) Impact of interaction between myeloperoxidase and low-density lipoprotein on the specific activity of the enzyme and subsequent post-translational oxidative modifications of apolipoprotein B-100. J Lipid Res 55:747–757PubMedCrossRefGoogle Scholar
  11. Edeleva NV, Sergeeva TV, Nemtsova ER et al (2001) Antioxidants ceruloplasmin and lactoferrin in the prevention and treatment of postoperative complications in cancer patients. Anesteziol Reanimatol 5:61–64PubMedGoogle Scholar
  12. Gitlin JD (1988) Transcriptional regulation of ceruloplasmin gene expression during inflammation. J Biol Chem 263:6281–6287PubMedGoogle Scholar
  13. Glezer I, Chernomoretz A, David S et al (2007) Genes involved in the balance between neuronal survival and death during inflammation. PLoS ONE 2:e310PubMedCentralPubMedCrossRefGoogle Scholar
  14. Griffin SV, Chapman PT, Lianos EA et al (1999) The inhibition of myeloperoxidase by ceruloplasmin can be reversed by anti-myeloperoxidase antibodies. Kidney Int 55:917–925PubMedCrossRefGoogle Scholar
  15. Ha-Doong NT, Eid C, Hemadi M et al (2010) In vitro interaction between ceruloplasmin and human serum transferring. Biochemistry 49:10261–10263CrossRefGoogle Scholar
  16. Kim IG, Park SY (1998) Requirement of intact human ceruloplasmin for the glutathione-linked peroxidase activity. FEBS Lett 437:293–296PubMedCrossRefGoogle Scholar
  17. Kokryakov VN (1999) Biology of antibiotics of animal origin [in Russian]. Nauka, St. PetersburgGoogle Scholar
  18. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  19. Lampreave F, Piñeiro A, Brock JH et al (1990) Interaction of bovine lactoferrin with other proteins of milk whey. Int J Biol Macromol 12:2–5PubMedCrossRefGoogle Scholar
  20. Lehrer RI, Cline MJ (1969) Leukocyte myeloperoxidase deficiency and disseminated candidiasis: the role of myeloperoxidase in resistance to Candida infection. J Clin Invest 48(8):1478–1488PubMedCentralPubMedCrossRefGoogle Scholar
  21. Marques L, Auriac A, Willemetz A et al (2012) Immune cells and hepatocytes express glycosylphosphatidylinositol-anchored ceruloplasmin at their cell surface. Blood Cells Mol Dis 48(2):110–120PubMedCrossRefGoogle Scholar
  22. Martin F, Linden T, Katschinski DM et al (2005) Copper-dependent activation of hypoxia-inducible factor (HIF)-1: implications for ceruloplasmin regulation. Blood 105:4613–4619PubMedCrossRefGoogle Scholar
  23. Mazumder B, Mukhopadhyay CK, Prok A et al (1997) Induction of ceruloplasmin synthesis by IFN-gamma in human monocytic cells. J Immunol 159:1938–1944PubMedGoogle Scholar
  24. Mukhopadhyay CK, Mazumder B, Fox PL (2000) Role of hypoxia-inducible factor-1 in transcriptional activation of ceruloplasmin by iron deficiency. J Biol Chem 275:21048–21054PubMedCrossRefGoogle Scholar
  25. Nakamura M, Tomita A, Nakatani H et al (2006) Antioxidant and antibacterial genes are upregulated in early involution of the mouse mammary gland: sharp increase of ceruloplasmin and lactoferrin in accumulating breast milk. DNA Cell Biol 25:491–500PubMedCrossRefGoogle Scholar
  26. Noyer M, Dwulet FE, Hao YL et al (1980) Purification and characterization of undegraded human ceruloplasmin. Anal Biochem 102:450–458PubMedCrossRefGoogle Scholar
  27. Osaki S (1966) Kinetic studies of ferrous ion oxidation with crystalline human ferroxidase (ceruloplasmin). J Biol Chem 241:5053–5059PubMedGoogle Scholar
  28. Panasenko OM, Gorudko IV, Sokolov AV (2013) Hypochlorous Acid as a precursor of free radicals in living systems. Biochemistry (Mosc) 78:1466–1489Google Scholar
  29. Panasenko OM, Chekanov AV, Vlasova II et al (2008) A study of the effect of ceruloplasmin and lactoferrin on the chlorination activity of leukocytic myeloperoxidase using the chemiluminescence method. Biofizika 53:573–581PubMedGoogle Scholar
  30. Park YS, Suzuki K, Mumby S et al (2000) Antioxidant binding of ceruloplasmin to myeloperoxidase: myeloperoxidase is inhibited, but oxidase, peroxidase and immunoreactive properties of ceruloplasmin remain intact. Free Radic Res 33:261–265PubMedCrossRefGoogle Scholar
  31. Perraudin JP, Prieels JP (1982) Lactoferrin binding with lysozyme-treated Micrococcus luteus. Biochim Biophys Acta 718:42–48PubMedCrossRefGoogle Scholar
  32. Pulina MO, Zakharova ET, Sokolov AV et al (2002) Studies of the ceruloplasmin-lactoferrin complex. Biochem Cell Biol 80:35–39PubMedCrossRefGoogle Scholar
  33. Pulina MO, Sokolov AV, Zakharova ET et al (2010) Effect of lactoferrin on consequences of acute experimental hemorrhagic anemia in rats. Bull Exp Biol Med 149:219–222PubMedCrossRefGoogle Scholar
  34. Sabatucci A, Vachette P, Vasilyev VB et al (2007) Structural characterization of the ceruloplasmin: lactoferrin complex in solution. J Mol Biol 371:1038–1046PubMedCrossRefGoogle Scholar
  35. Salzer JL, Lovejoy L, Linder MC et al (1998) Ran-2, a glial lineage marker, is a GPI-anchored form of ceruloplasmin. J Neurosci Res 54:147–157PubMedCrossRefGoogle Scholar
  36. Samygina VR, Sokolov AV, Pulina MO et al (2008) X-ray diffraction study of highly purified human ceruloplasmin. Crystallogr Rep 53:655–662CrossRefGoogle Scholar
  37. Samygina VR, Sokolov AV, Bourenkov G et al (2013) Ceruloplasmin: macromolecular assemblies with iron-containing acute phase proteins. PLoS ONE 8:e67145PubMedCentralPubMedCrossRefGoogle Scholar
  38. Segelmark M, Persson B, Hellmark T et al (1997) Binding and inhibition of myeloperoxidase (MPO): a major function of ceruloplasmin? Clin Exp Immunol 108:167–174PubMedCentralPubMedCrossRefGoogle Scholar
  39. Seshadri V, Fox PL, Mukhopadhyay CK (2002) Dual role of insulin in transcriptional regulation of the acute phase reactant ceruloplasmin. J Biol Chem 277:27903–27911PubMedCrossRefGoogle Scholar
  40. Sharonov BP, Govorova NJu, Lyzlova SN (1988) A comparative study of serum proteins ability to scavenge active oxygen species: O2-. and OCl-. Biochem Int 17:783–790PubMedGoogle Scholar
  41. Sharonov BP, Govorova NJu, Lyzlova SN (1989) Serum protein degradation by hypochlorite. Biochem Int 19:27–35PubMedGoogle Scholar
  42. Shiva S, Wang X, Ringwood LA et al (2006) Ceruloplasmin is a NO oxidase and nitrite synthase that determines endocrine NO homeostasis. Nat Chem Biol 2:486–493PubMedCrossRefGoogle Scholar
  43. Sokolov AV, Pulina MO, Zakharova ET et al (2005a) Effect of lactoferrin on the ferroxidase activity of ceruloplasmin. Biochem (Mosc) 70:1015–1019CrossRefGoogle Scholar
  44. Sokolov AV, Zakharova ET, Shavlovskiĭ MM et al (2005b) Isolation of stable human ceruloplasmin and its interaction with salmon protamine. Bioorg Khim 31:269–279PubMedGoogle Scholar
  45. Sokolov AV, Pulina MO, Zakharova ET et al (2006) Identification and isolation from breast milk of ceruloplasmin-lactoferrin complex. Biochem (Mosc) 71:160–166CrossRefGoogle Scholar
  46. Sokolov AV, Pulina MO, Ageeva KV et al (2007a) Interaction of ceruloplasmin, lactoferrin, and myeloperoxidase. Biochem (Mosc) 72:409–415CrossRefGoogle Scholar
  47. Sokolov AV, Pulina MO, Ageeva KV et al (2007b) Identification of leukocyte cationic proteins that interact with ceruloplasmin. Biochem (Mosc) 72:872–877CrossRefGoogle Scholar
  48. Sokolov AV, Ageeva KV, Pulina MO et al (2008) Ceruloplasmin and myeloperoxidase in complex affect the enzymatic properties of each other. Free Radic Res 42:989–998PubMedCrossRefGoogle Scholar
  49. Sokolov AV, Ageeva KV, Pulina MO et al (2009a) b Effect of lactoferrin on oxidative features of ceruloplasmin. Biometals 22:521–529PubMedCrossRefGoogle Scholar
  50. Sokolov AV, Pulina MO, Ageeva KV et al (2009b) Identification of complexes formed by ceruloplasmin with matrix metalloproteinases 2 and 12. Biochem (Mosc) 74:1388–1392CrossRefGoogle Scholar
  51. Sokolov AV, Prozorovski VN, Vasilyev VB (2009c) Study of interaction of ceruloplasmin, lactoferrin and myeloperoxidase by photon correlation spectroscopy. Biochem (Mosc) 74:1225–1227CrossRefGoogle Scholar
  52. Sokolov AV, Ageeva KV, Cherkalina OS et al (2010a) c Identification and properties of complexes formed by myeloperoxidase with lipoproteins and ceruloplasmin. Chem Phys Lipids 163:347–355PubMedCrossRefGoogle Scholar
  53. Sokolov AV, Golenkina EA, Kostevich VA et al (2010b) a Interaction of ceruloplasmin and 5-lipoxygenase. Biochem (Mosc) 75:1464–1469CrossRefGoogle Scholar
  54. Sokolov AV, Ageeva KV, Kostevich VA et al (2010c) Study of interaction of ceruloplasmin with serprocidins. Biochem (Mosc) 75:1361–1367CrossRefGoogle Scholar
  55. Sokolov AV, Kostevich VA, Romanico DN et al (2012a) b Two-stage method for purification of ceruloplasmin based on its interaction with neomycin. Biochem (Mosc) 77:631–638CrossRefGoogle Scholar
  56. Sokolov AV, Solovyov KV, Kostevich VA et al (2012b) Protection of ceruloplasmin by lactoferrin against hydroxyl radicals is pH dependent. Biochem Cell Biol 90:397–404PubMedCrossRefGoogle Scholar
  57. Sokolov AV, Pulina MO, Runova OL et al (2013) Complex of ceruloplasmin and lactoferrin in human lacrimal fluid. Med Acad J (Russ) 13:39–43Google Scholar
  58. Sokolov AV, Kostevich VA, Runova OL et al (2014) Proatherogenic modification of LDL by surface-bound myeloperoxidase. Chem Phys Lipid 180:72–80CrossRefGoogle Scholar
  59. Stoj C, Kosman DJ (2003) Cuprous oxidase activity of yeast Fet3p and human ceruloplasmin: implication for function. FEBS Lett 554:422–426PubMedCrossRefGoogle Scholar
  60. Sun XL, Baker HM, Shewry SC et al (1999) Structure of recombinant human lactoferrin expressed in Aspergillus awamori. Acta Crystallogr D Biol Crystallogr 55:403–407PubMedCrossRefGoogle Scholar
  61. Tenovuo J (2002) Clinical applications of antimicrobial host proteins lactoperoxidase, lysozyme and lactoferrin in xerostomia: efficacy and safety. Oral Dis 8:23–29PubMedCrossRefGoogle Scholar
  62. Tiruppathi C, Naqvi T, Wu Y et al (2004) Albumin mediates the transcytosis of myeloperoxidase by means of caveolae in endothelial cells. Proc Natl Acad Sci U S A 101:7699–7704PubMedCentralPubMedCrossRefGoogle Scholar
  63. van Dalen CJ, Whitehouse MW, Winterbourn CC et al (1997) Thiocyanate and chloride as competing substrates for myeloperoxidase. Biochem J 327:487–492PubMedCentralPubMedGoogle Scholar
  64. van der Does AM, Hensbergen PJ, Bogaards SJ et al (2012) The human lactoferrin-derived peptide hLF1-11 exerts immunomodulatory effects by specific inhibition of myeloperoxidase activity. J Immunol 188:5012–5019PubMedCrossRefGoogle Scholar
  65. Vasilyev VB, Kachurin AM, Soroka NV (1988) Dismutation of superoxide radicals by ceruloplasmin–details of the mechanism. Biokhimiya 53:2051–2058Google Scholar
  66. Vassiliev V, Harris ZL, Zatta P (2005) Ceruloplasmin in neurodegenerative diseases. Brain Res Brain Res Rev 49:633–640PubMedCrossRefGoogle Scholar
  67. Vlasova II, Sokolov AV, Arnhold J (2012) The free amino acid tyrosine enhances the chlorinating activity of human myeloperoxidase. J Inorg Biochem 106:76–83PubMedCrossRefGoogle Scholar
  68. Voronina OV, Monakhov NK (1980) Estradiol-induced formation of the polyribosomal complex synthesizing ceruloplasmin in rats. Biokhimiia 45:1010–1016PubMedGoogle Scholar
  69. White KN, Conesa C, Sánchez L et al (2012) The transfer of iron between ceruloplasmin and transferrins. Biochim Biophys Acta 1820:411–416PubMedCrossRefGoogle Scholar
  70. Xu PC, Chen M, Zhao MH (2012) High potential to reverse the inhibition of myeloperoxidase by ceruloplasmin of anti-myeloperoxidase autoantibodies of IgG3 subclass. Autoimmunity 45:218–225PubMedCrossRefGoogle Scholar
  71. Xu PC, Li ZY, Yang XW et al (2013) Myeloperoxidase influences the complement regulatory function of modified C-reactive protein. Innate Immun 20:440–448PubMedCrossRefGoogle Scholar
  72. Yang S, Hua Y, Nakamura T et al (2006) Up-regulation of brain ceruloplasmin in thrombin preconditioning. Acta Neurochir Suppl 96:203–206PubMedCrossRefGoogle Scholar
  73. Zakharova ET, Shavlovski MM, Bass MG et al (2000) Interaction of lactoferrin with ceruloplasmin. Arch Biochem Biophys 374:222–228PubMedCrossRefGoogle Scholar
  74. Zakharova ET, Kostevich VA, Sokolov AV et al (2012) Human apo-lactoferrin as a physiological mimetic of hypoxia stabilizes hypoxia-inducible factor-1 alpha. Biometals 25:1247–1259PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Alexey V. Sokolov
    • 1
    • 2
    • 3
  • Elena T. Zakahrova
    • 1
  • Valeria A. Kostevich
    • 1
    • 3
  • Valeria R. Samygina
    • 4
  • Vadim B. Vasilyev
    • 1
    • 2
  1. 1.N-W Branch of the Russian Academy of Medical SciencesInstitute for Experimental MedicineSaint PetersburgRussia
  2. 2.Saint-Petersburg State UniversitySaint PetersburgRussia
  3. 3.Research Institute of Physico-Chemical MedicineMoscowRussia
  4. 4.Institute of CrystallographyMoscowRussia

Personalised recommendations