Skip to main content
Log in

Lactoferrin, myeloperoxidase, and ceruloplasmin: complementary gearwheels cranking physiological and pathological processes

  • Published:
BioMetals Aims and scope Submit manuscript

An Erratum to this article was published on 30 July 2014

Abstract

Copper-containing plasma protein ceruloplasmin (Cp) forms a complex with lactoferrin (Lf), an iron-binding protein, and with the heme-containing myeloperoxidase (Mpo). In case of inflammation, Lf and Mpo are secreted from neutrophil granules. Among the plasma proteins, Cp seems to be the preferential partner of Lf and Mpo. After an intraperitoneal injection of Lf to rodents, the “Cp–Lf” complex has been shown to appear in their bloodstream. Cp prevents the interaction of Lf with protoplasts of Micrococcus luteus. Upon immunoprecipitation of Cp, the blood plasma becomes depleted of Lf and in a dose-dependent manner loses the capacity to inhibit the peroxidase activity of Mpo, but not the Mpo-catalyzed oxidation of thiocyanate in the (pseudo)halogenating cycle. Antimicrobial effect against E. coli displayed by a synergistic system that includes Lf and Mpo–H2O2–chloride, but not thiocyanate, as the substrate for Mpo is abrogated when Cp is added. Hence, Cp can be regarded as an anti-inflammatory factor that restrains the halogenating cycle and redirects the synergistic system Mpo–H2O2–chloride/thiocyanate to production of hypothiocyanate, which is relatively harmless for the human organism. Structure and functions of the “2Cp–2Lf–Mpo” complex and binary complexes Cp–Lf and 2Cp–Mpo in inflammation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Cp:

Ceruloplasmin

Lf:

Lactoferrin

Mpo:

Myeloperoxidase

References

  • Anderson NL, Nance SL, Pearson TW et al (1982) Specific antiserum staining of two-dimensional electrophoretic patterns of human plasma proteins immobilized on nitrocellulose. Electrophoresis 3:135–142

    Article  CAS  Google Scholar 

  • Bakkenist AR, Wever R, Vulsma T et al (1978) Isolation procedure and some properties of myeloperoxidase from human leucocytes. Biochim Biophys Acta 524:45–54

    Article  CAS  PubMed  Google Scholar 

  • Beers RF Jr, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

    CAS  PubMed  Google Scholar 

  • Blair-Johnson M, Fiedler T, Fenna R (2001) Human myeloperoxidase: structure of a cyanide complex and its interaction with bromide and thiocyanate substrates at 1.9 Å resolution. Biochemistry 4:13990–13997

    Article  Google Scholar 

  • Borisova AV, Karyakina EE, Cosnier S et al (2009) Current-free deposition of Prussian blue with organic polymers: towards improved stability and mass production of the advanced hydrogen peroxide transducer. Electroanalysis 21:409–414

    Article  CAS  Google Scholar 

  • Chandler JD, Day BJ (2012) Thiocyanate: a potentially useful therapeutic agent with host defense and antioxidant properties. Biochem Pharmacol 84:1381–1387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chapman AL, Mocatta TJ, Shiva S et al (2013) Ceruloplasmin is an endogenous inhibitor of myeloperoxidase. J Biol Chem 288:6465–6477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cooper RA (2013) Inhibition of biofilms by glucose oxidase, lactoperoxidase and guaiacol: the active antibacterial component in an enzyme alginogel. Int Wound J 10:630–637

    Article  Google Scholar 

  • Davis BJ (1964) Disc electrophoresis. II. Method and application to human serum proteins. Ann N Y Acad Sci 121:404–427

  • Delporte C, Zouaoui Boudjeltia K, Noyon C et al (2014) Impact of interaction between myeloperoxidase and low-density lipoprotein on the specific activity of the enzyme and subsequent post-translational oxidative modifications of apolipoprotein B-100. J Lipid Res 55:747–757

    Article  CAS  PubMed  Google Scholar 

  • Edeleva NV, Sergeeva TV, Nemtsova ER et al (2001) Antioxidants ceruloplasmin and lactoferrin in the prevention and treatment of postoperative complications in cancer patients. Anesteziol Reanimatol 5:61–64

    PubMed  Google Scholar 

  • Gitlin JD (1988) Transcriptional regulation of ceruloplasmin gene expression during inflammation. J Biol Chem 263:6281–6287

    CAS  PubMed  Google Scholar 

  • Glezer I, Chernomoretz A, David S et al (2007) Genes involved in the balance between neuronal survival and death during inflammation. PLoS ONE 2:e310

    Article  PubMed Central  PubMed  Google Scholar 

  • Griffin SV, Chapman PT, Lianos EA et al (1999) The inhibition of myeloperoxidase by ceruloplasmin can be reversed by anti-myeloperoxidase antibodies. Kidney Int 55:917–925

    Article  CAS  PubMed  Google Scholar 

  • Ha-Doong NT, Eid C, Hemadi M et al (2010) In vitro interaction between ceruloplasmin and human serum transferring. Biochemistry 49:10261–10263

    Article  Google Scholar 

  • Kim IG, Park SY (1998) Requirement of intact human ceruloplasmin for the glutathione-linked peroxidase activity. FEBS Lett 437:293–296

    Article  CAS  PubMed  Google Scholar 

  • Kokryakov VN (1999) Biology of antibiotics of animal origin [in Russian]. Nauka, St. Petersburg

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lampreave F, Piñeiro A, Brock JH et al (1990) Interaction of bovine lactoferrin with other proteins of milk whey. Int J Biol Macromol 12:2–5

    Article  CAS  PubMed  Google Scholar 

  • Lehrer RI, Cline MJ (1969) Leukocyte myeloperoxidase deficiency and disseminated candidiasis: the role of myeloperoxidase in resistance to Candida infection. J Clin Invest 48(8):1478–1488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marques L, Auriac A, Willemetz A et al (2012) Immune cells and hepatocytes express glycosylphosphatidylinositol-anchored ceruloplasmin at their cell surface. Blood Cells Mol Dis 48(2):110–120

    Article  CAS  PubMed  Google Scholar 

  • Martin F, Linden T, Katschinski DM et al (2005) Copper-dependent activation of hypoxia-inducible factor (HIF)-1: implications for ceruloplasmin regulation. Blood 105:4613–4619

    Article  CAS  PubMed  Google Scholar 

  • Mazumder B, Mukhopadhyay CK, Prok A et al (1997) Induction of ceruloplasmin synthesis by IFN-gamma in human monocytic cells. J Immunol 159:1938–1944

    CAS  PubMed  Google Scholar 

  • Mukhopadhyay CK, Mazumder B, Fox PL (2000) Role of hypoxia-inducible factor-1 in transcriptional activation of ceruloplasmin by iron deficiency. J Biol Chem 275:21048–21054

    Article  CAS  PubMed  Google Scholar 

  • Nakamura M, Tomita A, Nakatani H et al (2006) Antioxidant and antibacterial genes are upregulated in early involution of the mouse mammary gland: sharp increase of ceruloplasmin and lactoferrin in accumulating breast milk. DNA Cell Biol 25:491–500

    Article  CAS  PubMed  Google Scholar 

  • Noyer M, Dwulet FE, Hao YL et al (1980) Purification and characterization of undegraded human ceruloplasmin. Anal Biochem 102:450–458

    Article  CAS  PubMed  Google Scholar 

  • Osaki S (1966) Kinetic studies of ferrous ion oxidation with crystalline human ferroxidase (ceruloplasmin). J Biol Chem 241:5053–5059

    CAS  PubMed  Google Scholar 

  • Panasenko OM, Gorudko IV, Sokolov AV (2013) Hypochlorous Acid as a precursor of free radicals in living systems. Biochemistry (Mosc) 78:1466–1489

  • Panasenko OM, Chekanov AV, Vlasova II et al (2008) A study of the effect of ceruloplasmin and lactoferrin on the chlorination activity of leukocytic myeloperoxidase using the chemiluminescence method. Biofizika 53:573–581

    CAS  PubMed  Google Scholar 

  • Park YS, Suzuki K, Mumby S et al (2000) Antioxidant binding of ceruloplasmin to myeloperoxidase: myeloperoxidase is inhibited, but oxidase, peroxidase and immunoreactive properties of ceruloplasmin remain intact. Free Radic Res 33:261–265

    Article  PubMed  Google Scholar 

  • Perraudin JP, Prieels JP (1982) Lactoferrin binding with lysozyme-treated Micrococcus luteus. Biochim Biophys Acta 718:42–48

    Article  CAS  PubMed  Google Scholar 

  • Pulina MO, Zakharova ET, Sokolov AV et al (2002) Studies of the ceruloplasmin-lactoferrin complex. Biochem Cell Biol 80:35–39

    Article  CAS  PubMed  Google Scholar 

  • Pulina MO, Sokolov AV, Zakharova ET et al (2010) Effect of lactoferrin on consequences of acute experimental hemorrhagic anemia in rats. Bull Exp Biol Med 149:219–222

    Article  CAS  PubMed  Google Scholar 

  • Sabatucci A, Vachette P, Vasilyev VB et al (2007) Structural characterization of the ceruloplasmin: lactoferrin complex in solution. J Mol Biol 371:1038–1046

    Article  CAS  PubMed  Google Scholar 

  • Salzer JL, Lovejoy L, Linder MC et al (1998) Ran-2, a glial lineage marker, is a GPI-anchored form of ceruloplasmin. J Neurosci Res 54:147–157

    Article  CAS  PubMed  Google Scholar 

  • Samygina VR, Sokolov AV, Pulina MO et al (2008) X-ray diffraction study of highly purified human ceruloplasmin. Crystallogr Rep 53:655–662

    Article  CAS  Google Scholar 

  • Samygina VR, Sokolov AV, Bourenkov G et al (2013) Ceruloplasmin: macromolecular assemblies with iron-containing acute phase proteins. PLoS ONE 8:e67145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Segelmark M, Persson B, Hellmark T et al (1997) Binding and inhibition of myeloperoxidase (MPO): a major function of ceruloplasmin? Clin Exp Immunol 108:167–174

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seshadri V, Fox PL, Mukhopadhyay CK (2002) Dual role of insulin in transcriptional regulation of the acute phase reactant ceruloplasmin. J Biol Chem 277:27903–27911

    Article  CAS  PubMed  Google Scholar 

  • Sharonov BP, Govorova NJu, Lyzlova SN (1988) A comparative study of serum proteins ability to scavenge active oxygen species: O2-. and OCl-. Biochem Int 17:783–790

    CAS  PubMed  Google Scholar 

  • Sharonov BP, Govorova NJu, Lyzlova SN (1989) Serum protein degradation by hypochlorite. Biochem Int 19:27–35

    CAS  PubMed  Google Scholar 

  • Shiva S, Wang X, Ringwood LA et al (2006) Ceruloplasmin is a NO oxidase and nitrite synthase that determines endocrine NO homeostasis. Nat Chem Biol 2:486–493

    Article  CAS  PubMed  Google Scholar 

  • Sokolov AV, Pulina MO, Zakharova ET et al (2005a) Effect of lactoferrin on the ferroxidase activity of ceruloplasmin. Biochem (Mosc) 70:1015–1019

    Article  CAS  Google Scholar 

  • Sokolov AV, Zakharova ET, Shavlovskiĭ MM et al (2005b) Isolation of stable human ceruloplasmin and its interaction with salmon protamine. Bioorg Khim 31:269–279

    CAS  PubMed  Google Scholar 

  • Sokolov AV, Pulina MO, Zakharova ET et al (2006) Identification and isolation from breast milk of ceruloplasmin-lactoferrin complex. Biochem (Mosc) 71:160–166

    Article  CAS  Google Scholar 

  • Sokolov AV, Pulina MO, Ageeva KV et al (2007a) Interaction of ceruloplasmin, lactoferrin, and myeloperoxidase. Biochem (Mosc) 72:409–415

    Article  CAS  Google Scholar 

  • Sokolov AV, Pulina MO, Ageeva KV et al (2007b) Identification of leukocyte cationic proteins that interact with ceruloplasmin. Biochem (Mosc) 72:872–877

    Article  CAS  Google Scholar 

  • Sokolov AV, Ageeva KV, Pulina MO et al (2008) Ceruloplasmin and myeloperoxidase in complex affect the enzymatic properties of each other. Free Radic Res 42:989–998

    Article  CAS  PubMed  Google Scholar 

  • Sokolov AV, Ageeva KV, Pulina MO et al (2009a) b Effect of lactoferrin on oxidative features of ceruloplasmin. Biometals 22:521–529

    Article  CAS  PubMed  Google Scholar 

  • Sokolov AV, Pulina MO, Ageeva KV et al (2009b) Identification of complexes formed by ceruloplasmin with matrix metalloproteinases 2 and 12. Biochem (Mosc) 74:1388–1392

    Article  CAS  Google Scholar 

  • Sokolov AV, Prozorovski VN, Vasilyev VB (2009c) Study of interaction of ceruloplasmin, lactoferrin and myeloperoxidase by photon correlation spectroscopy. Biochem (Mosc) 74:1225–1227

    Article  CAS  Google Scholar 

  • Sokolov AV, Ageeva KV, Cherkalina OS et al (2010a) c Identification and properties of complexes formed by myeloperoxidase with lipoproteins and ceruloplasmin. Chem Phys Lipids 163:347–355

    Article  CAS  PubMed  Google Scholar 

  • Sokolov AV, Golenkina EA, Kostevich VA et al (2010b) a Interaction of ceruloplasmin and 5-lipoxygenase. Biochem (Mosc) 75:1464–1469

    Article  CAS  Google Scholar 

  • Sokolov AV, Ageeva KV, Kostevich VA et al (2010c) Study of interaction of ceruloplasmin with serprocidins. Biochem (Mosc) 75:1361–1367

    Article  CAS  Google Scholar 

  • Sokolov AV, Kostevich VA, Romanico DN et al (2012a) b Two-stage method for purification of ceruloplasmin based on its interaction with neomycin. Biochem (Mosc) 77:631–638

    Article  CAS  Google Scholar 

  • Sokolov AV, Solovyov KV, Kostevich VA et al (2012b) Protection of ceruloplasmin by lactoferrin against hydroxyl radicals is pH dependent. Biochem Cell Biol 90:397–404

    Article  CAS  PubMed  Google Scholar 

  • Sokolov AV, Pulina MO, Runova OL et al (2013) Complex of ceruloplasmin and lactoferrin in human lacrimal fluid. Med Acad J (Russ) 13:39–43

    Google Scholar 

  • Sokolov AV, Kostevich VA, Runova OL et al (2014) Proatherogenic modification of LDL by surface-bound myeloperoxidase. Chem Phys Lipid 180:72–80

    Article  CAS  Google Scholar 

  • Stoj C, Kosman DJ (2003) Cuprous oxidase activity of yeast Fet3p and human ceruloplasmin: implication for function. FEBS Lett 554:422–426

    Article  CAS  PubMed  Google Scholar 

  • Sun XL, Baker HM, Shewry SC et al (1999) Structure of recombinant human lactoferrin expressed in Aspergillus awamori. Acta Crystallogr D Biol Crystallogr 55:403–407

    Article  CAS  PubMed  Google Scholar 

  • Tenovuo J (2002) Clinical applications of antimicrobial host proteins lactoperoxidase, lysozyme and lactoferrin in xerostomia: efficacy and safety. Oral Dis 8:23–29

    Article  CAS  PubMed  Google Scholar 

  • Tiruppathi C, Naqvi T, Wu Y et al (2004) Albumin mediates the transcytosis of myeloperoxidase by means of caveolae in endothelial cells. Proc Natl Acad Sci U S A 101:7699–7704

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van Dalen CJ, Whitehouse MW, Winterbourn CC et al (1997) Thiocyanate and chloride as competing substrates for myeloperoxidase. Biochem J 327:487–492

    PubMed Central  PubMed  Google Scholar 

  • van der Does AM, Hensbergen PJ, Bogaards SJ et al (2012) The human lactoferrin-derived peptide hLF1-11 exerts immunomodulatory effects by specific inhibition of myeloperoxidase activity. J Immunol 188:5012–5019

    Article  PubMed  Google Scholar 

  • Vasilyev VB, Kachurin AM, Soroka NV (1988) Dismutation of superoxide radicals by ceruloplasmin–details of the mechanism. Biokhimiya 53:2051–2058

    Google Scholar 

  • Vassiliev V, Harris ZL, Zatta P (2005) Ceruloplasmin in neurodegenerative diseases. Brain Res Brain Res Rev 49:633–640

    Article  CAS  PubMed  Google Scholar 

  • Vlasova II, Sokolov AV, Arnhold J (2012) The free amino acid tyrosine enhances the chlorinating activity of human myeloperoxidase. J Inorg Biochem 106:76–83

    Article  CAS  PubMed  Google Scholar 

  • Voronina OV, Monakhov NK (1980) Estradiol-induced formation of the polyribosomal complex synthesizing ceruloplasmin in rats. Biokhimiia 45:1010–1016

    CAS  PubMed  Google Scholar 

  • White KN, Conesa C, Sánchez L et al (2012) The transfer of iron between ceruloplasmin and transferrins. Biochim Biophys Acta 1820:411–416

    Article  CAS  PubMed  Google Scholar 

  • Xu PC, Chen M, Zhao MH (2012) High potential to reverse the inhibition of myeloperoxidase by ceruloplasmin of anti-myeloperoxidase autoantibodies of IgG3 subclass. Autoimmunity 45:218–225

    Article  CAS  PubMed  Google Scholar 

  • Xu PC, Li ZY, Yang XW et al (2013) Myeloperoxidase influences the complement regulatory function of modified C-reactive protein. Innate Immun 20:440–448

    Article  PubMed  Google Scholar 

  • Yang S, Hua Y, Nakamura T et al (2006) Up-regulation of brain ceruloplasmin in thrombin preconditioning. Acta Neurochir Suppl 96:203–206

    Article  CAS  PubMed  Google Scholar 

  • Zakharova ET, Shavlovski MM, Bass MG et al (2000) Interaction of lactoferrin with ceruloplasmin. Arch Biochem Biophys 374:222–228

    Article  CAS  PubMed  Google Scholar 

  • Zakharova ET, Kostevich VA, Sokolov AV et al (2012) Human apo-lactoferrin as a physiological mimetic of hypoxia stabilizes hypoxia-inducible factor-1 alpha. Biometals 25:1247–1259

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by RFBR grants № 12-04-00301; 13-04-01191, MK-6062.2014.4 and by the Program “Human Proteome”. The authors are grateful to Professor V. N. Kokryakov for generously providing leukocytes of healthy donors, to Dr. M. N. Berlov for kind assistance in mastering the evaluation of antimicrobial activity of proteins, to Dr. M. O. Pulina and Dr. A. N. Skvortsov for CD-spectra measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey V. Sokolov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolov, A.V., Zakahrova, E.T., Kostevich, V.A. et al. Lactoferrin, myeloperoxidase, and ceruloplasmin: complementary gearwheels cranking physiological and pathological processes. Biometals 27, 815–828 (2014). https://doi.org/10.1007/s10534-014-9755-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-014-9755-2

Keywords

Navigation