, Volume 26, Issue 6, pp 1033–1040 | Cite as

Physiological copper exposure in Jurkat cells induces changes in the expression of genes encoding cholesterol biosynthesis proteins

  • Ricardo Gutiérrez-García
  • Talía del Pozo
  • Miriam Suazo
  • Verónica Cambiazo
  • Mauricio González


Copper is an essential micronutrient that functions as an enzymatic cofactor in a wide range of cellular processes. Although adequate Cu levels are essential for normal metabolism, excess Cu can be toxic to cells. Cellular responses to copper deficiency and overload involve changes in the expression of genes directly and indirectly involved in copper metabolism. However little is known on the effect of physiological copper concentration on gene expression changes. In the current study we aimed to establish whether the expression of genes encoding enzymes related to cholesterol (hmgcs1, hmgcr, fdft) and fatty acid biosynthesis and LDL receptor can be induced by an iso-physiological copper concentration. The iso-physiological copper concentration was determined as the bioavailable plasmatic copper in a healthy adult population. In doing so, two blood cell lines (Jurkat and THP-1) were exposed for 6 or 24 h to iso- or supraphysiological copper concentrations. Our results indicated that in cells exposed to an iso-physiological copper concentration the early induction of genes involved in lipid metabolism was not mediated by copper itself but by the modification of the cellular redox status. Thus our results contributed to understand the involvement of copper in the regulation of cholesterol metabolism under physiological conditions.


Gene expression Copper Cholesterol ROS Jurkat THP-1 



Funding sources: This research was supported by grants from FONDECYT 3120098, 11070255, 1110427 and 1120254 and FONDAP 15090007.

Supplementary material

10534_2013_9680_MOESM1_ESM.doc (41 kb)
Supplementary material 1 (DOC 41 kb)
10534_2013_9680_MOESM2_ESM.doc (32 kb)
Supplementary material 2 (DOC 32 kb)


  1. Amemiya-Kudo M, Shimano H, Hasty AH, Yahagi N, Yoshikawa T, Matsuzaka T, Okazaki H, Tamura Y, Iizuka Y, Ohashi K, Osuga J, Harada K, Gotoda T, Sato R, Kimura S, Ishibashi S, Yamada N (2002) Transcriptional activities of nuclear SREBP-1a, -1c, and -2 to different target promoters of lipogenic and cholesterogenic genes. J Lipid Res 43:1220–1235PubMedGoogle Scholar
  2. Armendariz AD, Gonzalez M, Loguinov AV, Vulpe CD (2004) Gene expression profiling in chronic copper overload reveals upregulation of Prnp and App. Physiol Genomics 20:45–54PubMedCrossRefGoogle Scholar
  3. Burkhead JL, Ralle M, Wilmarth P, David L, Lutsenko S (2011) Elevated copper remodels hepatic RNA processing machinery in the mouse model of Wilson’s disease. J Mol Biol 406:44–58PubMedCrossRefGoogle Scholar
  4. Cousins RJ (1994) Metal elements and gene expression. Annu Rev Nutr 14:449–469PubMedCrossRefGoogle Scholar
  5. de Cremoux P, Bieche I, Tran-Perennou C, Vignaud S, Boudou E, Asselain B, Lidereau R, Magdelenat H, Becette V, Sigal-Zafrani B, Spyratos F (2004) Inter-laboratory quality control for hormone-dependent gene expression in human breast tumors using real-time reverse transcription-polymerase chain reaction. Endocr Relat Cancer 11:489–495PubMedCrossRefGoogle Scholar
  6. Deschamps P, Kulkarni PP, Sarkar B (2004) X-ray structure of physiological copper(II)-bis(l-histidinato) complex. Inorg Chem 43:3338–3340PubMedCrossRefGoogle Scholar
  7. Dheda K, Huggett JF, Bustin SA, Johnson MA, Rook G, Zumla A (2004) Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques 37:112–114 116, 118–119PubMedGoogle Scholar
  8. Gaetke LM, Chow CK (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189:147–163PubMedCrossRefGoogle Scholar
  9. Gonzalez M, Reyes-Jara A, Suazo M, Jo WJ, Vulpe C (2008) Expression of copper-related genes in response to copper load. Am J Clin Nutr 88:830S–834SPubMedGoogle Scholar
  10. Gupta A, Lutsenko S (2009) Human copper transporters: mechanism, role in human diseases and therapeutic potential. Future Med Chem 1:1125–1142PubMedCrossRefGoogle Scholar
  11. Heuchel R, Radtke F, Georgiev O, Stark G, Aguet M, Schaffner W (1994) The transcription factor MTF-1 is essential for basal and heavy metal-induced metallothionein gene expression. EMBO J 13:2870–2875PubMedGoogle Scholar
  12. Huster D, Purnat TD, Burkhead JL, Ralle M, Fiehn O, Stuckert F, Olson NE, Teupser D, Lutsenko S (2007) High copper selectively alters lipid metabolism and cell cycle machinery in the mouse model of Wilson disease. J Biol Chem 282:8343–8355PubMedCrossRefGoogle Scholar
  13. Kehrer JP (2000) The Haber-Weiss reaction and mechanisms of toxicity. Toxicology 149:43–50PubMedCrossRefGoogle Scholar
  14. Kelly EJ, Palmiter RD (1996) A murine model of Menkes disease reveals a physiological function of metallothionein. Nat Genet 13:219–222PubMedCrossRefGoogle Scholar
  15. Kreuder J, Otten A, Fuder H, Tumer Z, Tonnesen T, Horn N, Dralle D (1993) Clinical and biochemical consequences of copper-histidine therapy in Menkes disease. Eur J Pediatr 152:828–832PubMedCrossRefGoogle Scholar
  16. Lee J, Prohaska JR, Thiele DJ (2001) Essential role for mammalian copper transporter Ctr1 in copper homeostasis and embryonic development. Proc Natl Acad Sci U S A 98:6842–6847PubMedCrossRefGoogle Scholar
  17. Lei KY (1991) Dietary copper: cholesterol and lipoprotein metabolism. Annu Rev Nutr 11:265–283PubMedCrossRefGoogle Scholar
  18. Lichtlen P, Schaffner W (2001) The “metal transcription factor” MTF-1: biological facts and medical implications. Swiss Med Wkly 131:647–652PubMedGoogle Scholar
  19. Linder MC, Hazegh-Azam M (1996) Copper biochemistry and molecular biology. Am J Clin Nutr 63:S797–S811Google Scholar
  20. Luza SC, Speisky HC (1996) Liver copper storage and transport during development: implications for cytotoxicity. Am J Clin Nutr 63:812S–820SPubMedGoogle Scholar
  21. Marshall OJ (2004) PerlPrimer: cross-platform, graphical primer design for standard, bisulphite and real-time PCR. Bioinformatics 20:2471–2472PubMedCrossRefGoogle Scholar
  22. McElwee MK, Song MO, Freedman JH (2009) Copper activation of NF-kappaB signaling in HepG2 cells. J Mol Biol 393:1013–1021PubMedCrossRefGoogle Scholar
  23. Muller P, van Bakel H, van de Sluis B, Holstege F, Wijmenga C, Klomp LW (2007) Gene expression profiling of liver cells after copper overload in vivo and in vitro reveals new copper-regulated genes. J Biol Inorg Chem 12:495–507PubMedCrossRefGoogle Scholar
  24. Palmer C, Diehn M, Alizadeh AA, Brown PO (2006) Cell-type specific gene expression profiles of leukocytes in human peripheral blood. BMC Genomics 7:115PubMedCrossRefGoogle Scholar
  25. Pauwels M, van Weyenbergh J, Soumillion A, Proost P, De Ley M (1994) Induction by zinc of specific metallothionein isoforms in human monocytes. Eur J Biochem 220:105–110PubMedCrossRefGoogle Scholar
  26. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45PubMedCrossRefGoogle Scholar
  27. Ramakers C, Ruijter JM, Deprez RH, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66PubMedCrossRefGoogle Scholar
  28. Sadhu C, Gedamu L (1989) Metal-specific posttranscriptional control of human metallothionein genes. Mol Cell Biol 9:5738–5741PubMedGoogle Scholar
  29. Saydam N, Adams TK, Steiner F, Schaffner W, Freedman JH (2002) Regulation of metallothionein transcription by the metal-responsive transcription factor MTF-1: identification of signal transduction cascades that control metal-inducible transcription. J Biol Chem 277:20438–20445PubMedCrossRefGoogle Scholar
  30. Sekiya M, Hiraishi A, Touyama M, Sakamoto K (2008) Oxidative stress induced lipid accumulation via SREBP1c activation in HepG2 cells. Biochem Biophys Res Commun 375:602–607PubMedCrossRefGoogle Scholar
  31. Seth R, Yang S, Choi S, Sabean M, Roberts EA (2004) In vitro assessment of copper-induced toxicity in the human hepatoma line, Hep G2. Toxicol In Vitro 18:501–509PubMedCrossRefGoogle Scholar
  32. Steinbrenner H, Ramos MC, Stuhlmann D, Mitic D, Sies H, Brenneisen P (2005) Tumor promoter TPA stimulates MMP-9 secretion from human keratinocytes by activation of superoxide-producing NADPH oxidase. Free Radic Res 39:245–253PubMedCrossRefGoogle Scholar
  33. Suazo M, Olivares F, Mendez MA, Pulgar R, Prohaska JR, Arredondo M, Pizarro F, Olivares M, Araya M, Gonzalez M (2008) CCS and SOD1 mRNA are reduced after copper supplementation in peripheral mononuclear cells of individuals with high serum ceruloplasmin concentration. J Nutr Biochem 19:269–274PubMedCrossRefGoogle Scholar
  34. Svensson PA, Englund MC, Markstrom E, Ohlsson BG, Jernas M, Billig H, Torgerson JS, Wiklund O, Carlsson LM, Carlsson B (2003) Copper induces the expression of cholesterogenic genes in human macrophages. Atherosclerosis 169:71–76PubMedCrossRefGoogle Scholar
  35. Tang Z, Gasperkova D, Xu J, Baillie R, Lee JH, Clarke SD (2000) Copper deficiency induces hepatic fatty acid synthase gene transcription in rats by increasing the nuclear content of mature sterol regulatory element binding protein 1. J Nutr 130:2915–2921PubMedGoogle Scholar
  36. Tapia L, Suazo M, Hodar C, Cambiazo V, Gonzalez M (2003) Copper exposure modifies the content and distribution of trace metals in mammalian cultured cells. Biometals 16:169–174PubMedCrossRefGoogle Scholar
  37. Tapia L, Gonzalez-Aguero M, Cisternas MF, Suazo M, Cambiazo V, Uauy R, Gonzalez M (2004) Metallothionein is crucial for safe intracellular copper storage and cell survival at normal and supra-physiological exposure levels. Biochem J 378:617–624PubMedCrossRefGoogle Scholar
  38. Thiele DJ (1992) Metal-regulated transcription in eukaryotes. Nucleic Acids Res 20:1183–1191PubMedCrossRefGoogle Scholar
  39. Uauy R, Olivares M, Gonzalez M (1998) Essentiality of copper in humans. Am J Clin Nutr 67:952s–959sPubMedGoogle Scholar
  40. Wang XJ, Hayes JD, Higgins LG, Wolf CR, Dinkova-Kostova AT (2010) Activation of the NRF2 signaling pathway by copper-mediated redox cycling of para- and ortho-hydroquinones. Chem Biol 17:75–85PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ricardo Gutiérrez-García
    • 1
    • 2
  • Talía del Pozo
    • 1
    • 2
  • Miriam Suazo
    • 1
    • 3
  • Verónica Cambiazo
    • 1
    • 2
  • Mauricio González
    • 1
    • 2
    • 4
  1. 1.Laboratorio de Bioinformática y Expresión Génica, INTAUniversidad de ChileSantiagoChile
  2. 2.Fondap-Center of Genome RegulationUniversidad de ChileSantiagoChile
  3. 3.Escuela de NutriciónUniversidad San SebastiánValdiviaChile
  4. 4.Laboratorio de Bioinformática y Matemática del Genoma, Centro de Modelamiento Matemático (UMI 2807, CNRS), Facultad de Ciencias Físicas y MatemáticasUniversidad de ChileSantiagoChile

Personalised recommendations