Advertisement

BioMetals

, Volume 26, Issue 5, pp 741–753 | Cite as

Ruthenium(II) carbonyl complexes containing S-methylisothiosemicarbazone based tetradentate ligand: synthesis, characterization and biological applications

  • Sellappan Selvamurugan
  • Rangasamy Ramachandran
  • Periasamy Viswanathamurthi
Article

Abstract

A series of hexa-coordinated ruthenium(II) complexes of the type [Ru(CO)(B)L n ] (n = 1–4; B = PPh3, AsPh3 or Py) have been synthesized by reacting dibasic quadridentate Schiff base ligands H2L n (n = 1–4) with starting complexes [RuHCl(CO)(EPh3)2(B)] (E = P or As; B = PPh3, AsPh3 or Py). The synthesized complexes were characterized using elemental and various spectral studies including UV–Vis, FT-IR, NMR (1H, 13C and 31P) and mass spectroscopy. An octahedral geometry was tentatively proposed for all the complexes based on the spectral data obtained. The experiments on antioxidant activity showed that the ruthenium(II) S-methylisothiosemicarbazone Schiff base complexes exhibited good scavenging activity against various free radicals (DPPH, OH and NO). The in vitro cytotoxicity of these complexes has been evaluated by MTT assay. The results demonstrate that the complexes have good anticancer activities against selected cancer cell line, human breast cancer cell line (MCF-7) and human skin carcinoma cell line (A431). The DNA cleavage studies showed that the complexes have better cleavage of pBR 322 DNA.

Keywords

Ruthenium(II) complexes Spectral studies Antioxidant Anticancer activity DNA cleavage 

Notes

Acknowledgments

We are thankful to the IISC Bangalore, STIC Cochin, SAIF Panjab University, Chandigarh for providing instrumental facilities. We also thankful to KMCH, Coimbatore and Biogenics Research and training center in Biotechnology, Hubli, Karnataka for anticancer and DNA cleavage studies.

References

  1. Alagesan M, Bhuvanesh SP, Dharmaraj N (2013) Potentially cytotoxic new copper(II) hydrazone complexes: synthesis, crystal structure and biological properties. Dalton Trans 42:7210–7223PubMedCrossRefGoogle Scholar
  2. Anitha P, Manikandan R, Endo A, Hashimoto T, Viswanathamurthi P (2012) Ruthenium(II) complexes containing quinone based ligands: Synthesis, characterization, catalytic applications and DNA interaction. Spectrochim Acta A 99:174–180CrossRefGoogle Scholar
  3. Atasever B, Ulkuseven B, Bal-Demirci T, Erdem-Kuruca S, Solakoğlu Z (2010) Cytotoxic activities of new iron(III) and nickel(II) chelates of some S-methyl-thiosemicarbazones on K562 and ECV304 cells. Invest New Drugs 28:421–432PubMedCrossRefGoogle Scholar
  4. Bal T, Atasever B, Solakoğlu Z, Erdem-Kuruca S, Ulküseven B (2007) Synthesis, characterisation and cytotoxic properties of the N1, N4-diarylidene-S-methyl-thiosemicarbazone chelates with Fe(III) and Ni(II). Eur J Med Chem 42(2):161–167PubMedCrossRefGoogle Scholar
  5. Beckford FA, Leblanc G, Thessing J, Shaloski M, Frost BJ, Li L, Seeram NP (2009) Organometallic ruthenium complexes with thiosemicarbazone ligands: Synthesis, structure and cytotoxicity of [(η6-p-cymene)Ru(NS)Cl]+ (NS = 9-anthraldehyde thiosemicarbazones). Inorg Chem Commun 12:1094–1098PubMedCrossRefGoogle Scholar
  6. Blagosklonny M, EI-diery WS (1996) In vitro evaluation of a p53-expressing adenovirus as an anti-cancer drug. Int J Cancer 67:386–392PubMedCrossRefGoogle Scholar
  7. Da S, Maia PI, Pavan FR, Leite CQF, Lemos SS, de Sousa GF, Batista AA, Nascimento OR, Ellena J, Castellano EE, Niquet E, Deflon VM (2009) Vanadium complexes with thiosemicarbazones: synthesis, characterization, crystal structures and anti-Mycobacterium tuberculosis activity. Polyhedron 28:398–406CrossRefGoogle Scholar
  8. Demoro B, Sarniguet C, Sanchez-Delgado R, Rossi M, Liebowitz D, Caruso F, Olea-Azar C, Moreno V, Medeiros A, Comini MA, Otero L, Gambino D (2012) New organoruthenium complexes with bioactive thiosemicarbazones as co-ligands: potential anti-trypanosomal agents. Dalton Trans 41(5):1534–1543PubMedCrossRefGoogle Scholar
  9. Fricker SP (2007) Metal based drugs: from serendipity to design. Dalton Trans 43:4903–4917PubMedCrossRefGoogle Scholar
  10. Fry NL, Mascharak PK (2011) Photoactive ruthenium nitrosyls as NO donors: how to sensitize them toward visible light. Acc Chem Res 44:289–298PubMedCrossRefGoogle Scholar
  11. Gulcin I, Kufrevioglu OI, Oktay M, Buyukokuroglu ME (2004) Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). J Ethnopharmacol 90:205–215PubMedCrossRefGoogle Scholar
  12. Hanson K, Wilger DJ, Jones ST, Harrison DP, Bettis SE, Luo H, Papanikolas JM, Waters ML, Meyer TJ (2013) Electron transfer dynamics of peptide-derivatized RuII-polypyridyl complexes on nanocrystalline metal oxide films. Pept Sci 100:25–37CrossRefGoogle Scholar
  13. Hartinger CG, Dyson PJ (2009) Bioorganometallic chemistry—from teaching paradigms to medicinal applications. Chem Soc Rev 38:391–401PubMedCrossRefGoogle Scholar
  14. Hsu CW, Kuo CF, Chuang SM, Hou MH (2013) Elucidation of the DNA-interacting properties and anticancer activity of a Ni (II)-coordinated mithramycin dimer complex. Biometals 26:1–12PubMedCrossRefGoogle Scholar
  15. Jouad EM, Thanh XD, Bouet G, Bonneau S, Khan MA (2002) In vitro and in vivo effects of [Ni(M5FTSC)2C12] complex in cancer: preliminary tests. Anticancer Res 22:1713Google Scholar
  16. Kalaivani P, Prabhakaran R, Poornima P, Dallemer F, Vijayalakshmi K, Vijaya Padma V, Natarajan K (2012) Versatile coordination behavior of salicylaldehyde thiosemicarbazone in ruthenium(II) carbonyl complexes: synthesis, spectral, X-ray, electrochemistry, DNA binding, cytotoxicity, and cellular uptake Studies. Organometallics 31:8323–8332CrossRefGoogle Scholar
  17. Ma ZY, Qiao X, Xie CZ, Shao J, Xu JY, Qiang ZY, Lou JS (2012) Activities of a novel Schiff base copper(II) complex on growth inhibition and apoptosis induction toward MCF-7 human breast cancer cells via mitochondrial pathway. J Inorg Biochem 117:1–9PubMedCrossRefGoogle Scholar
  18. Muthu Tamizh M, Mereiter K, Kirchner K, Karvembu K (2012) Ruthenium(II) carbonyl complexes containing pincer like ONS donor Schiff base and triphenylphosphine as catalyst for selective oxidation of alcohols at room temperature. J Organomet Chem 700:194–201CrossRefGoogle Scholar
  19. Narayana Prabhu R, Ramesh R (2012) Synthesis, structural characterization, electrochemistry and catalytic transfer hydrogenation of ruthenium(II) carbonyl complexes containing tridentate benzoylhydrazone ligands. J Organomet Chem 718:43–51CrossRefGoogle Scholar
  20. Nareshkumar K, Ramesh R (2005) Synthesis, luminescent, redox and catalytic properties of Ru(II) carbonyl complexes containing 2N2O donors. Polyhedron 24:1885–1892CrossRefGoogle Scholar
  21. Pal S (2002) Ruthenium(II) complexes containing RuN4O2 spheres assembled via pyridine-imine-amide coordination. Syntheses, structures, properties and protonation behaviour of coordinated amide. J Chem Soc Dalton Trans. doi: 10.1039/B110912J Google Scholar
  22. Ramachandran R, Viswanathamurthi P (2013) Ruthenium(II) carbonyl complexes containing pyridine carboxamide ligands and PPh3/AsPh3/Py coligands: synthesis, spectral characterization, catalytic and antioxidant studies. Spectrochim Acta A 103:53–61CrossRefGoogle Scholar
  23. Ramachandran E, Thomas SP, Poornima P, Kalaivani P, Prabhakaran R, Vijaya Padma V, Natarajan K (2012) Evaluation of DNA binding, antioxidant and cytotoxic activity of mononuclear Co(III) complexes of 2-oxo-1,2-dihydrobenzo[h]quinoline-3-carbaldehyde thiosemicarbazones. Eur J Med Chem 50:405–415PubMedCrossRefGoogle Scholar
  24. Rice-Evans CA, Diplock AT (1993) Current status of antioxidant therapy. Free Radic Biol Med 15:77–96PubMedCrossRefGoogle Scholar
  25. Sathiya Kamatchi T, Chitrapriya N, Lee H, Fronczek CF, Fronczek FR, Natarajan K (2012) Ruthenium(II)/(III) complexes of 4-hydroxy-pyridine-2,6-dicarboxylic acid with PPh3/AsPh3 as co-ligand: impact of oxidation state and co-ligands on anticancer activity in vitro. Dalton Trans 41:2066–2077CrossRefGoogle Scholar
  26. Sathyadevi P, Krishnamoorthy P, Bhuvanesh SP, Kalaiselvi P, Vijaya Padma V, Dharmaraj N (2012) Organometallic ruthenium(II) complexes: Synthesis, structure and influence of substitution at azomethine carbon towards DNA/BSA binding, radical scavenging and cytotoxicity. Eur J Med Chem 55:420–431PubMedCrossRefGoogle Scholar
  27. Senthil Raja D, Bhuvanesh SP, Natarajan K (2011) Biological evaluation of a novel water soluble sulphur bridged binuclear copper(II) thiosemicarbazone complex. Eur J Med Chem 46:4584–4594PubMedCrossRefGoogle Scholar
  28. Stringer T, Therrien B, Hendricks DT, Guzgav H, Smith GS (2011) Mono- and di-nuclear (η6-arene) ruthenium(II) benzaldehyde thiosemicarbazone complexes: Synthesis, characterization and cytotoxicity. Inorg Chem Commun 14(6):956–960CrossRefGoogle Scholar
  29. Su W, Zhou Q, Huang Y, Huang Q, Huo L, Xiao Q, Huang S, Huang C, Chen R, Qian Q, Liu L, Li P (2013) Synthesis, crystal and electronic structure, anticancer activity of ruthenium(II) arene complexes with thiosemicarbazones. Appl Organomet Chem 27:307–312CrossRefGoogle Scholar
  30. Tsai K, Hsu TG, Hsu KM, Cheng H, Liu TY, Hsu CF, Kong CW (2001) Oxidative DNA damage in human peripheral leukocytes induced by massive aerobic exercise. Free Radic Biol Med 31:1465–1472PubMedCrossRefGoogle Scholar
  31. Udilova N, Kozlov AV, Bieberschulte W, Frei K, Ehrenberger K, Nohl H (2003) The antioxidant activity of caroverine. Biochem Pharmacol 65:59–65PubMedCrossRefGoogle Scholar
  32. Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4:307–320PubMedCrossRefGoogle Scholar
  33. Wang BD, Yang ZY, Lu MH, Hai J, Wang Q, Chen ZN (2009) Synthesis, characterization, cytotoxic activity and DNA binding Ni(II) complex with the 6-hydroxy chromone-3-carbaldehyde thiosemicarbazone. J Organomet Chem 694:4069–4075CrossRefGoogle Scholar
  34. Xie YY, Huang HL, Yao JH, Lin GJ, Jiang GB, Liu YJ (2013) DNA-binding, photocleavage, cytotoxicity in vitro, apoptosis and cell cycle arrest studies of symmetric ruthenium(II) complexes. Eur J Med Chem 63:603–610PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Sellappan Selvamurugan
    • 1
  • Rangasamy Ramachandran
    • 1
  • Periasamy Viswanathamurthi
    • 1
  1. 1.Department of ChemistryPeriyar UniversitySalemIndia

Personalised recommendations