Advertisement

BioMetals

, Volume 25, Issue 1, pp 9–21 | Cite as

Perspective: the potential of pyrazole-based compounds in medicine

  • Frankline K. Keter
  • James Darkwa
Article

Abstract

Pyrazoles are widely used as core motifs for a large number of compounds for various applications such as catalysis, agro-chemicals, building blocks of other compounds and in medicine. The attractiveness of pyrazole and its derivatives is their versatility that allows for synthesis of a series of analogues with different moieties in them, thus affecting the electronics and by extension the properties of the resultant compounds. In medicine pyrazole is found as a pharmacophore in some of the active biological molecules. While pyrazole derivatives have been extensively studied for many applications including anticancer, antimicrobial, anti-inflammatory, antiglycemic, anti-allergy and antiviral, much less has been reported on their metal counterparts in spite of the fact that metals have been shown to impart activity to ligands. Thus this perspective is intended to demonstrate the potential of pyrazole and pyrazolyl metal complexes in the areas of drug discovery and development. Several examples, that include palladium, platinum, copper, gold, zinc, cobalt, nickel, iron, copper, silver and gallium complexes, are used to bolster the above point. For the purposes of this review three areas are discussed, that is pyrazole metal complexes as: (i) anticancer, (ii) antibacterial/parasitic and (iii) antiviral agents.

Keywords

Pyrazole Metal complexes Anticancer Antibacterial Antiparasitic Antiviral 

Notes

Acknowledgment

The authors would like to acknowledge Mintek and University of Johannesburg for support for some of the work cited in this review.

References

  1. Abunada NM, Hassaneen HM, Kandile NG, Miqdad OA (2008) Synthesis and antimicrobial activity of some new pyrazole, fused pyrazolo[3, 4-d]-pyrimidine and Pyrazolo[4, 3-e][1, 2, 4]-triazolo[1, 5-c]pyrimidine derivatives. Molecules 13:1501–1517PubMedCrossRefGoogle Scholar
  2. Adnan AB, Abdel-Aziem T (2004) Design, synthesis and biological evaluation of some pyrazole derivatives as anti-inflammatory-antimicrobial agents. Bioorg Med Chem 12:1935–1945CrossRefGoogle Scholar
  3. Aiello E, Aiello S, Mingoia F, Bacchi A, Pelizzi G, Musiu C, Setzu MG, Pani A, La Colla P, Marongiu ME (2000) Synthesis and antimicrobial activity of new 3-(1-R-3(5)-methyl-4-nitroso-1H-5(3)-pyrazolyl)-5-methylisoxazoles. Bioorg Med Chem 8:2719–2728PubMedCrossRefGoogle Scholar
  4. Akbas E, Berber I (2005) Antibacterial and antifungal activities of new pyrazolo[3, 4-d]pyridazin derivatives. Eur J Med Chem 40:401–405PubMedCrossRefGoogle Scholar
  5. Al-Allaf TAK, Rashan LJ (2001) Cis- and trans-platinum and palladium complexes: a comparative study review as antitumor agents. Boll Chim Farm 140:205–210PubMedGoogle Scholar
  6. Al-Allaf TAK, Al-Bayati RH, Khalaf SH (1993) Synthesis and spectroscopic studies on organotin(IV) complexes of some pyrazoles and pyrazol-5-ones and their antibacterial activity. Appl Organomet Chem 7:635–640CrossRefGoogle Scholar
  7. Bauer VJ, Dalalian HP, Fanshawe WJ, Safir SR, Tocus EC, Boshart CR (1968) 4-[3(5)-pyrazolyl]pyridinium salts. A new class of hypoglycemic agents. J Med Chem 11:981–984PubMedCrossRefGoogle Scholar
  8. Bebernitz GR, Argentieri G, Battle B, Brennan C, Balkan B, Burkey BF, Eckhardt M, Gao J, Kapa P, Strohschein RJ, Schuster HF, Wilson M, Xu DD (2001) The effect of 1, 3-diaryl-[1H]-pyrazole-4-acetamides on glucose utilization in ob/ob mice. J Med Chem 44:2601–2611PubMedCrossRefGoogle Scholar
  9. Bekhit AA, Fahmy HTY, Rostom SAF, Baraka AM (2003) Design and synthesis of some substituted 1H-pyrazolyl-thiazolo[4,5-d]pyrimidines as anti-inflammatory-antimicrobial agents. Eur J Med Chem 38:27–36Google Scholar
  10. Bekhit AA, Ashour HMA, Guemei AA (2005) Novel pyrazole derivatives as potential promising anti-inflammatory antimicrobial agents. Arch Pharm 338:167–174CrossRefGoogle Scholar
  11. Bekhit AA, Abdel-Rahman HM, Guemei AA (2006) Synthesis and biological evaluation of some hydroxypyrazole derivatives as anti-inflammatory-antimicrobial agents. Archiv der Pharmazie 339:81–87Google Scholar
  12. Bildirici I, Sener A, Tozlu I (2007) Further derivatives of 4-benzoyl-1, 5-diphenyl-1Hpyrazole-3-carboxylic acid and their antibacterial activities. Med Chem Res 16:418–426CrossRefGoogle Scholar
  13. Biot IC, Glorian G, Maciejewski L, Brocard L, Domarle O, Blampaim G, Millet P, Georges AJ, Abesolo H, Dive O, Lebibi J (1997) Synthesis and antimalarial activity in vitro and in vivo of a new ferrocene–chloroquine analogue. J Med Chem 40:3715–3718PubMedCrossRefGoogle Scholar
  14. Blomstrand R (1972) In: Akeson A, Ehrenberg A (eds) Structure and function of oxidation–reduction enzymes. Pergamon, Oxford, pp 667–679Google Scholar
  15. Blomstrand R, Ostling-Wintzell H, Lof A, McMartin K, Tolf B, Hedstrom K (1979) Pyrazoles as inhibitors of alcohol oxidation and as important tools in alcohol research: an approach to therapy against methanol poisoning. Proc Natl Acad Sci USA 76:3499–3503PubMedCrossRefGoogle Scholar
  16. Braddock PD, Connors TA, Jones M, Khokhar AR, Melzack DH, Tobe ML (1975) Structure and activity relationships of platinum complexes with anti-tumour activity. Chem-Biol Interact 11:145–161PubMedCrossRefGoogle Scholar
  17. Bravi G, Corfield JA, Grimes RM, Guidetti R, Lovegrove VLH, Mordaunt JE, Shah P, Slater MJ (2005) 4-Carboxpyrazole derivatives useful as antivirals agents. Pat. No. WO/2005/092863Google Scholar
  18. Broomhead JA, Rendina I, Sterns M (1992) Dinuclear complexes of platinum with the 4,4′-dipyrazolylmethane ligand. Synthesis, characterization, and x-ray crystal structure of.gamma.-bis(4,4′-dipyrazolylmethane-N,N′)bis[dichloroplatinum(II)]-N,N-dimethylformamide (1/2) and related complexes. Inorg Chem 31:1880–1889CrossRefGoogle Scholar
  19. Broomhead JA, Rendina I, Webster LK (1993) Dinuclear complexes of platinum having anticancer properties. DNA-binding studies and biological activity of Bis(4,4′-dipyrazolylmethane-N,N′)-bis[dichloroplatinum(II)] and related complexes. J Inorg Biochem 49:221–234PubMedCrossRefGoogle Scholar
  20. Broomhead JA, Camm G, Sterns M, Webster L (1998) Dinuclear complexes of first transition series metals with 4,4′-dipyrazolylmethane: characterisation, DNA binding and anticancer properties. Inorg Chim Acta 271:151–159CrossRefGoogle Scholar
  21. Budakoti A, Abid M, Azam A (2007) Syntheses, characterization and in vitro antiamoebic activity of new Pd(II) complexes with 1-N-substituted thiocarbamoyl-3,5-diphenyl-2-pyrazoline derivatives. Eur J Med Chem 42:544–551PubMedCrossRefGoogle Scholar
  22. Budzisz E, Malecka M, Nawrot B (2004a) Synthesis and structure of highly substituted pyrazole ligands and their complexes with platinum(II) and palladium(II) metal ions. Tetrahedron 60:1749–1759CrossRefGoogle Scholar
  23. Budzisz E, Krajewska U, Rozalski M, Szulawska A, Czyz M, Nawrot B (2004b) Biological evaluation of novel Pt(II) and Pd(II) complexes with pyrazole-containing ligands. Eur J Pharmacol 502:59–65PubMedCrossRefGoogle Scholar
  24. Budzisz E, Miernicka M, Lorenz I-P, Mayer P, Krajewska U, Rozalski M (2009) Synthesis and X-ray structure of platinum(II), palladium(II) and copper(II) complexes with pyridine–pyrazole ligands: influence of ligands’ structure on cytotoxic activity. Polyhedron 28:637–645CrossRefGoogle Scholar
  25. Burguete A, Pontiki E, Hadjipavlou-Litina D, Villar R, Vicente E, Solano B, Ancizu S, Perez-Silanes S, Aldana I, Monge A (2007) Synthesis and anti-inflammatory/antioxidant activities of some new ring substituted 3-phenyl-1-(1,4-di-N-oxide quinoxalin-2-yl)-2-propen-1-one derivatives and of their 4,5-dihydro-(1H)-pyrazole analogues. Bioorg Med Chem Lett 17:6439–6443Google Scholar
  26. Carabateas PM, Diana GD (1980) Antiviral arylenedioxyalkyl substituted pyrazoles. Pat. No. 06/008412Google Scholar
  27. Casas JS, Castellano EE, Ellena J, García-Tasende MS, Pérez-Parallé ML, Sánchez A, Sánchez-González A, Sordo J, Touceda A (2008) New Pd(II) and Pt(II) complexes with N,S-chelated pyrazolonate ligands: molecular and supramolecular structure and preliminary study of their in vitro antitumoral activity. J Inorg Biochem 102:33–45PubMedCrossRefGoogle Scholar
  28. Chande MS, Thakkar NV, Patil DV (1999) Synthesis and antimicrobial activity of bis[6-phenyl-4-methyl-3-substituted-pyrazo[4,5-d]pyrazol-1-yl]thioketones. Drug Res 56:207–210Google Scholar
  29. Ciesielska E, Szulawska A, Studzian K, Ochocki J, Malinowska K, Kik K, Szmigiero L (2006) Comparative studies on the mechanism of cytotoxic action of novel platinum II complexes with pyrazole ligands. J Inorg Biochem 100:1579–1585PubMedCrossRefGoogle Scholar
  30. Comber RN, Gray RJ, Secrist JA III (1991) Acyclic analogues of pyrazofurin: syntheses and antiviral evaluation. Carbohydr Res 216:441–452PubMedCrossRefGoogle Scholar
  31. Dahlbom R, Tolf BR, Akeson A, Lundquist G, Theorell H (1974) On the inhibitory power of some further pyrazole derivatives of horse liver alcohol dehydrogenase. Biochem Biophys Res Commun 57:549–5353PubMedCrossRefGoogle Scholar
  32. Damljanovic I, Vukicevic M, Radulovic N, Palic R, Ellmerer E, Ratkovic Z, Joksovic MD, Vukicevic RD (2009) Synthesis and antimicrobial activity of some new pyrazole derivatives containing a ferrocene unit. Bioorg Med Chem Lett 19:1093–1096PubMedCrossRefGoogle Scholar
  33. Di Parsia MT, Suarez C, Vitolo MJ, Marquez VE, Beyer B, Urbina C, Hurtado I (1981) Synthesis and study of the potential antiallergic activity of some pyrazole derivatives. J Med Chem 24:117–119PubMedCrossRefGoogle Scholar
  34. Dias HVR, Batdorf KH, Fianchini M, Diyabalanage HVK, Carnahan S, Mulcahy R, Rabiee A, Nelson K, van Waasbergen LG (2006) Antimicrobial properties of highly fluorinated silver(I) tris(pyrazolyl)borates. J Inorg Biochem 100:158–160PubMedCrossRefGoogle Scholar
  35. Ding L, Grehn L, De Clercq E, Andrei G, Snoeck R, Balzarini J, Fransson B, Ragnarsson U (1989) Synthesis and antiviral activity of three pyrazole analogues of distamycin A. Acta Chem Scand (Copenhagen, Denmark) 48:498–505Google Scholar
  36. Dombrowski KE, Baldwin W, Sheats JE (1986) Metallocenes in biochemistry, microbiology & medicine. J Organomet Chem 302:281–306CrossRefGoogle Scholar
  37. Duivenvoorden WCM, Liu Y-N, Schatte G, Kraatz H-B (2005) Synthesis of redox-active ferrocene pyrazole conjugates and their cytotoxicity in human mammary adenocarcinoma MCF-7 cells. Inorg Chim Acta 358:3183–3189CrossRefGoogle Scholar
  38. Eklund H, Nordström B, Zeppezauer E, Söderlund G, Ohlsson I, Boiwe T, Söderberg BO, Tapia O, Brändén CI, Akeson A (1976) Three-dimensional structure of horse liver alcohol dehydrogenase at 2–4 Å resolution. J Mol Biol 102:27–59PubMedCrossRefGoogle Scholar
  39. Eklund H, Samama J-P, Wallen L (1982) Pyrazole binding in crystalline binary and ternary complexes with liver alcohol dehydrogenase. Biochemistry 21:4858–4866PubMedCrossRefGoogle Scholar
  40. El-Gaby MSA, Atalla AA, Gaber AM, Al-Wahab KAA (2000) Studies on aminopyrazoles: antibacterial activity of some novel pyrazolo[1, 5-a]pyrimidines containing sulfonamido moieties. Farmaco 55:596–602PubMedCrossRefGoogle Scholar
  41. Elguero J, Goya P, Jagerovic N, Silva AMS (2002) Pyrazoles as drugs: facts and fantasies. Targets Heterocycl Syst 6:52–98Google Scholar
  42. El-Sabbagh OI, Baraka MM, Ibrahim SM, Pannecouque C, Andrei G, Snoeck R, Balzarini J, Rashad AA (2009) Synthesis and antiviral activity of new pyrazole and thiazole derivatives. Eur J Med Chem 44:3746–3753PubMedCrossRefGoogle Scholar
  43. Fang J, Jin Z, Li Z, Liu W (2003) Synthesis, structure and antibacterial activities of novel ferrocenyl-containing 1-phenyl-3-ferrocenyl-4-triazolyl-5-aryl-dihydropyrazole derivatives. J Organomet Chem 674:1–9CrossRefGoogle Scholar
  44. Farghaly AM, Soliman FSG, El Semary MMA, Rostom SAF (2001) Polysubstituted pyrazoles, part 4: synthesis, antimicrobial and anti-inflammatory activity of some pyrazoles. Pharmazie 56:28–32PubMedGoogle Scholar
  45. Fonteh P, Keter FK, Meyer D, Guzei IA, Darkwa J (2009) Tetra-chloro-bis(3, 5-dimethylpyrazolylmethane)gold(III) chloride: an HIV-1 reverse transcriptase and protease inhibitor. J Inorg Biochem 103:190–194PubMedCrossRefGoogle Scholar
  46. Gama S, Mendes F, Marques F, Santos IC, Carvalho MF, Correia I, Pessoa JC, Santos I, Paulo A (2011) Copper(II) complexes with tridentate pyrazole-based ligands: synthesis, characterization, DNA cleavage activity and cytotoxicity. J Inorg Biochem 105:637–644PubMedCrossRefGoogle Scholar
  47. Gamage SA, Spicer JA, Rewcastle GW, Milton J, Sohal S, Dangerfield W, Mistry P, Vicker N, Charlton PA, Denny WA (2002) Structure–activity relationships for pyrido-, imidazo-, pyrazolo-, pyrazino-, and pyrrolophenazinecarboxamides as topoisomerase-targeted anticancer agents. J Med Chem 45:740–743PubMedCrossRefGoogle Scholar
  48. Garg HG, Singhal A, Mathur JML (1973) Synthesis and biological activity of 1,5-diphenyl-4-arylazopyrazoles and 5,5-dimethylcyclohexane-1,2,3-trione-bishydrazones. J Pharm Sci 62:494–496PubMedCrossRefGoogle Scholar
  49. Genin MJ, Allwine DA, Anderson DJ, Barbachyn MR, Emmert DE, Garmon SA, Graber DR, Grega KC, Hester JB, Hutchinson DK, Morris J, Reischer RJ, Ford CW, Zurenko GE, Hamel JC, Schaadt RD, Stapert D, Yagi BH (2000a) Substituent effects on the antibacterial activity of nitrogen–carbon-linked (azolylphenyl)oxazolidinones with expanded activity against the fastidious gram-negative organisms haemophilus influenzae and moraxella catarrhalis. J Med Chem 43:953–970PubMedCrossRefGoogle Scholar
  50. Genin MJ, Biles C, Keiser BJ, Poppe SM, Swaney SM, Tarpley WG, Yagi Y, Romero DL (2000b) Novel 1,5-Diphenylpyrazole nonnucleoside HIV-1 reverse transcriptase inhibitors with enhanced activity versus the delavirdine-resistant P236L mutant: lead identification and SAR of 3- and 4-substituted derivatives. J Med Chem 43:1034–1040PubMedCrossRefGoogle Scholar
  51. Graham J, Muhsin M, Kirkpatrick P (2004) Oxaliplatin. Nat Rev Drug Discov 3:11–12PubMedCrossRefGoogle Scholar
  52. Haque TS, Tadesse S, Marcinkeviciene J, Rogers MJ, Sizemore C, Kopcho LM, Amsler K, Ecret LD, Zhan DL, Hobbs F, Slee A, Trainor GL, Stern AM, Copeland RA, Combs AP (2002) Parallel synthesis of potent, pyrazole-based inhibitors of helicobacter pylori dihydroorotate dehydrogenase. J Med Chem 45:4669–4678PubMedCrossRefGoogle Scholar
  53. Harrap KR (1985) Preclinical studies identifying carboplatin as a viable cisplatin alternative. Cancer Treat Rev 12:21–23PubMedCrossRefGoogle Scholar
  54. Hirschmann R, Buchschacher P, Steinberg NG, Fried JH, Ellis R, Kent GJ, Tishler M (1964) Synthesis and structure of steroidal Pregn-4-eno- and 5α-Pregnano [3,2-c]pyrazoles. A novel class of potent anti-inflammatory steroids. J Am Chem Soc 86:1520–1527CrossRefGoogle Scholar
  55. Johansson A, Poliakov A, Åkerblom E, Lindeberg G, Winiwarter S, Samuelsson B, Danielson UH, Hallberg A (2002) Tetrapeptides as potent protease inhibitors of hepatitis C virus full-length NS3 (protease–helicase/NTPase). Bioorg Med Chem 10:3915–3922PubMedCrossRefGoogle Scholar
  56. Jungheim LN (1989) Bicyclic pyrazolidinone antibacterial agents. Synthesis of side chain analogues of carbapenems PS-5 and thienamycin. Tetrahedron Lett 30:1889–1892CrossRefGoogle Scholar
  57. Kaymakcıoglu BK, Rollas S (2002) Synthesis, characterization and evaluation of antituberculosis activity of some hydrazones. Il Farmaco 57:595–599CrossRefGoogle Scholar
  58. Kees KL, Fitzgerald JJ Jr, Steiner KE, Mattes JF, Mihan B, Tosi T, Mondoro D, McCaleb ML (1996) New potent antihyperglycemic agents in db/db mice: synthesis and structure–activity relationship studies of (4-substituted benzyl)(trifluoromethyl)pyrazoles and -pyrazolones. J Med Chem 39:3920–3928PubMedCrossRefGoogle Scholar
  59. Kelland LR, Sharp SY, O’Neill CF, Raynaud FI, Beale PJ, Judson IR (1999) Mini-review: discovery and development of platinum complexes designed to circumvent cisplatin resistance. J Inorg Biochem 77:111–115PubMedCrossRefGoogle Scholar
  60. Keter FK, Kanyanda S, Darkwa J, Rees DJG, Meyer M (2008) In vitro evaluation of dichloro-bis(pyrazole)palladium(II) and dichloro-bis(pyrazole)platinum(II) complexes as anticancer agents. Cancer Chemother Pharmacol 63:127–138PubMedCrossRefGoogle Scholar
  61. Keter FK, Nell MJ, Omondi B, Guzei IA, Darkwa J (2009a) Anticancer activities of bis(pyrazol-1-ylthiocarbonyl)disulfides against HeLa cells. J Chem Res 5:322–325CrossRefGoogle Scholar
  62. Keter FK, Ojwach SO, Oyetunji OA, Guzei IA, Darkwa J (2009b) Bis(pyrazolyl) palladium(II), platinum(II) and gold(III) complexes: syntheses, molecular structures and substitution reactions with l-cysteine. Inorg Chim Acta 362:2595–2602CrossRefGoogle Scholar
  63. Kidani Y, Noji M, Tashiro T (1980) Antitumor activity of platinum(II) complexes of 1,2-diamino-cyclohexane isomers. Gann 71:637–643PubMedGoogle Scholar
  64. Komeda S, Lutz M, Spek AL, Chikuma M, Reedijk J (2000) New antitumor-active azole-bridged dinuclear platinum(II) complexes: synthesis, characterization, crystal structures, and cytotoxic studies. Inorg Chem 39:4230–4236PubMedCrossRefGoogle Scholar
  65. Kratz F, Nuber B, Weiss J, Keppler BK (1992) Synthesis and characterization of potential antitumour and antiviral gallium(III) complexes of N-heterocycles. Polyhedron 11:487–498CrossRefGoogle Scholar
  66. Kucukguzel SG, Rollas S, Erdeniz H, Kivaz M, Ekinci AC, Vidin A (2000) Synthesis, characterization and pharmacological properties of some 4-arylhydrazono-2-pyrazoline-5-one derivatives obtained from heterocyclic amines. Eur J Med Chem 35:761–771CrossRefGoogle Scholar
  67. Kulkarni NV, Revankar VK (2011) Synthesis, antimicrobial screening, and DNA-binding/cleavage of new pyrazole-based binuclear CoII, NiII, CuII, and ZnII complexes. J Coord Chem 64:725–741CrossRefGoogle Scholar
  68. La Colla P, Manfredini S, Simoni D, Baraldi PG, Pani A (1996) Pyrazole-related derivatives endowed with antitumor and antiviral activities, procedures for their preparation, pharmaceutical formulations containing them. Pat. No. WO/1996/040704Google Scholar
  69. Li TK, Theorell H (1969) Human liver alcohol dehydrogenase: inhibition by pyrazole and pyrazole analogs. Acta Chem Scand 23:892–902PubMedCrossRefGoogle Scholar
  70. Li H, Nukui S, Scales SA, Teng’ M, Yin C (2010). Novel 3-aminopyrrolo[3,4-C]pyrazole-5(1H, 4H, 6H) carbaldehyde derivatives. Pat No. 20100130501Google Scholar
  71. Li G, Fathi R, Yang Z, Liao Y, Zhu Q, Lam A, Sandrasagra A, Nawoschik K, Cho H-J, Cao J, Ruoqiu W, Wobbe CR, Liu Y (2011) 4-Ethnyl pyrazole derivative compounds and methods for treatment of HCV. Pat. No. US 7923004Google Scholar
  72. Mahmud K, Khan MA, Iqbal MZ (2001) Antibacterial property of some transition metal complexes of pyrazole derivatives. Pak J Biol Sci 4:1000–1001CrossRefGoogle Scholar
  73. Manfredini S, Bazzanini R, Baraldi PG, Guarneri M, Simoni D, Marongiu ME, Pani A, La Colla P, Tramontano E (1992) Pyrazole-related nucleosides. Synthesis and antiviral/antitumor activity of some substituted pyrazole and pyrazolo[4,3-d]-1,2,3-triazin-4-one nucleosides. J Med Chem 35:917–924PubMedCrossRefGoogle Scholar
  74. Manikannan R, Venkatesan R, Muthusubramanian S, Yogeeswari P, Sriram D (2010) Pyrazole derivatives from azines of substituted phenacyl aryl/cyclohexyl sulfides and their antimycobacterial activity. Bioorg Med Chem Lett 20:6920–6924PubMedCrossRefGoogle Scholar
  75. Menozzi G, Mosti L, Fossa P, Mattioli F, Ghia M (1997) ω-Dialkylaminoalkyl ethers of phenyl-(5-substituted 1-phenyl-1H-pyrazol-4-yl)methanols with analgesic and anti-inflammatory activity. J Heterocycl Chem 34:963–968Google Scholar
  76. Mosoarca EM, Pantenburg I, Tudose R, Meyer G, Popa NC, Han A, Alexandrova R, Kalfin R, Linert W, Costisor O (2011) Synthesis, structure and cytotoxic activity of mixed-valent Cu(I)/Cu(II) salt containing a pyrazolone derivative as ligand. Inorg Chim Acta. doi: 10.1016/j.ica.2011.02.035 Google Scholar
  77. Moukha-chafiq O, Taha ML, Lazrek HB, Vasseur J–J, Pannecouque C, Witvrouw M, De Clercq E (2002) Synthesis and biological activity of some 4-substituted 1-[1-(2,3-dihydroxy-1-propoxy)methyl-1,2,3-triazol-(4&5)-ylmethyl]-1H-pyrazolo[3,4-d]pyrimidines. Farmaco 57:27–32PubMedCrossRefGoogle Scholar
  78. Narlawar R, Baumann K, Schubenel R, Schmidt B (2007) Curcumin derivatives inhibit or modulate beta-amyloid precursor protein metabolism. Neurodegener Dis 4:88–93PubMedCrossRefGoogle Scholar
  79. Narlawar R, Pickhardt M, Leuchtenberger S, Baumann K, Krause S, Dyrks T, Weggen S, Mandelkow E, Schmidt B (2008) Curcumin-derived pyrazoles Swiss army knives or blunt Alzheimer’s disease? ChemMedChem 3:165–172PubMedCrossRefGoogle Scholar
  80. Negm NA, Said MM, Morsy SMI (2010) Pyrazole derived cationic surfactants and their tin and copper complexes: synthesis, surface activity, antibacterial and antifungal efficacy. J Surfactants Deterg 13:521–528CrossRefGoogle Scholar
  81. Nomiya K, Noguchi R, Ohsawa K, Tsuda K, Oda M (2000) Synthesis, crystal structure and antimicrobial activities of two isomeric gold(I) complexes with nitrogen-containing heterocycle and triphenylphosphine ligands, [Au(L)(PPh3)] (HL = pyrazole and imidazole). J Inorg Biochem 78:363–370PubMedCrossRefGoogle Scholar
  82. Onoa GB, Moreno V, Font-Bardia M, Solans X, Pérez JM, Alonso C (1999) Structural and cytotoxic study of new Pt(II) and Pd(II) complexes with the bi-heterocyclic ligand mepirizole. J Inorg Biochem 75:205–212PubMedCrossRefGoogle Scholar
  83. Ouyang G, Cai X-J, Chen Z, Song B-A, Bhadury PS, Yang S, Jin L-H, Xue W, Hu D-Y, Zeng S (2008) Synthesis and antiviral activities of pyrazole derivatives containing an oxime moiety. J Agric Food Chem 56:10160–10167PubMedCrossRefGoogle Scholar
  84. Pancic F, Steinberg BA, Diana GD, Carabateas PM, Gorman WG, Came PE (1981) Antiviral activity of Win 41258-3, a pyrazole compound, against herpes simplex virus in mouse genital infection and in guinea pig skin infection. Antimicrob Agents Chemother 19:470–476PubMedGoogle Scholar
  85. Panda J, Srinivas SV, Rao ME (2002) Synthesis and antimicrobial activity of some pyrazoline derivatives of 4(3H)-quinazolinones. J Indian Chem Soc 79:770–776Google Scholar
  86. Park H-J, Lee K, Park S-J, Ahn B, Lee J-C, Cho HY, Lee K-I (2005) Identification of antitumor activity of pyrazole oxime ethers. Bioorg Med Chem Lett 15:3307–3312PubMedCrossRefGoogle Scholar
  87. Pereira EF, Aracava Y, Aronstam RS, Barreiro EJ, Albuquerque EXJ (1992) Pyrazole, an alcohol dehydrogenase inhibitor, has dual effects on N-methyl-d-aspartate receptors of hippocampal pyramidal cells: agonist and noncompetitive antagonist. Pharmacol Exp Ther 261:331–340Google Scholar
  88. Pettinari C, Caruso F, Zaffaroni N, Villa R, Marchetti F, Pettinari R, Phillips C, Tanski J, Rossi M (2006) Synthesis, spectroscopy (IR, multinuclear NMR, ESI-MS), diffraction, density functional study and in vitro antiproliferative activity of pyrazole-beta-diketone dihalotin(IV) compounds on 5 melanoma cell lines. J Inorg Biochem 100:58–69PubMedCrossRefGoogle Scholar
  89. Pinto DCGA, Silva AMS, Cavaleiro JAS, Foces-Foces C, Llamas-Saiz AL, Jagerovic N, Elguero J (1999) Synthesis and molecular structure of 3-(2-benzyloxy-6-hydroxyphenyl)-5-styrylpyrazoles. Reaction of 2-styrylchromones and hydrazine hydrate. Tetrahedron 55:10187–10200CrossRefGoogle Scholar
  90. Radi S, Salhi S, Radi A (2010) Synthesis and preliminary biological activity of some new pyrazole derivatives as acyclonucleoside analogues. Lett Drug Des Discov 7:27–30CrossRefGoogle Scholar
  91. Rathelot P, Azas N, El-Kashef H, Delmas F, Di Giorgio C, Timon-David P, Maldonado J, Vanelle P (2002) 1,3-Diphenylpyrazoles: synthesis and antiparasitic activities of azomethine derivatives. Eur J Med Chem 37:671–679PubMedCrossRefGoogle Scholar
  92. Rosenberg B, van Camp L, Krigas T (1965) Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature 205:698–699PubMedCrossRefGoogle Scholar
  93. Rosenberg B, van Camp L, Trosko JE, Mansour VH (1969) Platinum compounds: a new class of potent antitumour agents. Nature (London) 222:385–386CrossRefGoogle Scholar
  94. Rostom SAF, Shalaby MA, El-Demellawy MA (2003) Polysubstituted pyrazoles, part 5. Synthesis of new 1-(4-chlorophenyl)-4-hydroxy-1H-pyrazole-3-carboxylic acid hydrazide analogs and some derived ring systems. A novel class of potential antitumor and anti-HCV agents. Eur J Med Chem 38:959–974PubMedCrossRefGoogle Scholar
  95. Russell AD, Hugo WB (1994) Antimicrobial activity and action of silver. Prog Med Chem 31:351–370PubMedCrossRefGoogle Scholar
  96. Sakai K, Tomista Y, Ue T, Goshima K, Ohminato M, Tsubomura T, Matsumoto K, Ohmura K, Kawakami K (2000) Syntheses, antitumor activity, and molecular mechanics studies of cis-PtCl2(pzH)2 (pzH=pyrazole) and related complexes. Crystal structure of a novel Magnus-type double-salt [Pt(pzH)4][PtCl4][cis-PtCl2(pzH)2]2 involving two perpendicularly aligned 1D chains. Inorg Chim Acta 297:64–71CrossRefGoogle Scholar
  97. Sau DK, Butcher RJ, Chaudhuri S, Saha N (2003) Spectroscopic, structural and antibacterial properties of copper(II) complexes with bio-relevant 5-methyl-3-formylpyrazole N(4)-benzyl-N(4)-methylthiosemicarbazone. Mol Cell Biochem 253:21–29PubMedCrossRefGoogle Scholar
  98. Segapelo TV, Guzei IA, Spencer LC, Van Zyl WE, Darkwa J (2009) (Pyrazolylmethyl)pyridine platinum(II) and gold(III) complexes: synthesis, structures and evaluation as anticancer agents. Inorg Chim Acta 362:3314–3324CrossRefGoogle Scholar
  99. Sharma KV, Sharma V, Tripathi UN (2009) Synthesis, spectroscopic, antibacterial and antifungal studies of nickel(II)5(2′-hydroxyphenyl)-3-(4-X-phenyl)pyrazolinates and their addition complexes with N and P donor ligands. J Coord Chem 62:676–690CrossRefGoogle Scholar
  100. Shen D-M, Shu M, Mills SG, Chapman KT, Malkowitz L, Springer MS, Gould SL, DeMartino JA, Siciliano SJ, Kwei GY, Carella A, Carver G, Holmes K, Schleif WA, Danzeisen R, Hazuda D, Kessler J, Lineberger J, Miller MD, Emini EA (2004a) Antagonists of human CCR5 receptor containing 4-(pyrazolyl)piperidine side chains. Part 1: discovery and SAR study of 4-pyrazolylpiperidine side chains. Bioorg Med Chem Lett 14:935–939PubMedCrossRefGoogle Scholar
  101. Shen D-M, Shu M, Willoughby CA, Shah S, Lynch CL, Hale JJ, Mills SG, Chapman KT, Malkowitz L, Springer, Gould SL, DeMartino JA, Siciliano SJ, Lyons K, Pivnichny JV, Kwei GY, Carella A, Carver G, Holmes K, Schleif WA, Danzeisen R, Hazuda D, Kessler J, Lineberger J, Miller MD, Emini EA (2004b) Antagonists of human CCR5 receptor containing 4-(pyrazolyl)piperidine side chains. Part 2: Discovery of potent, selective, and orally bioavailable compounds. Bioorg Med Chem Lett 14:941–945PubMedCrossRefGoogle Scholar
  102. Shih SR, Chu TY, Reddy GR, Tseng SN, Chen HL, Tang WF, Wu MS, Yeh JY, Chao YS, Hsu JT, Hsieh HP, Horng JT (2010) Pyrazole compound BPR1P0034 with potent and selective anti-influenza virus activity. J Biomed Sci 23:13–17CrossRefGoogle Scholar
  103. Shipps Jr GW, Curran PJ, Annis DA, Nash HM, Cooper AB, Zhu HY, Wang J J-S, Desai JA, Girijavallabhan V (2006a) Substituted5-carboxyamide pyrazoles and [1,2,4] triazoles as antiviral agents. Pat. No. WO/2006/050034Google Scholar
  104. Shipps Jr GW, Wang T, Rosner KE, Curran PJ, Cooper AB, Girijavallabhan VM (2006b) Substituted 5-oxo pyrazoles and [1,2,4] triazoles as antiviral agents. Pat. No. US7115749Google Scholar
  105. Stauffer SR, Coletta CJ, Tedesco R, Nishiguchi G, Carlson K, Sun J, Katzenellenbogen BS, Katzenellenbogen JA (2000) Pyrazole ligands: structure–affinity/activity relationships and estrogen receptor-α-selective agonists. J Med Chem 43:4934–4947PubMedCrossRefGoogle Scholar
  106. Stauffer SR, Huang YR, Aron ZD, Coletta CJ, Sun J, Katzenellenbogen BS, Katzenellenbogen JA (2001) Triarylpyrazoles with basic side chains: development of pyrazole-based estrogen receptor antagonists. Bioorg Med Chem 9:151–161PubMedCrossRefGoogle Scholar
  107. Storer R, Ashton CJ, Baxter AD, Hann MM, Marr CLP, Mason AM, Mo C-L, Myers PL, Noble SA, Penn CR, Weir NG, Woods JM, Coe PL (1999) The synthesis and antiviral activity of 4-fluoro-1-β-d-ribofuranosyl-1H-pyrazole-3-carboxamide. Nucleotides 18:203–216CrossRefGoogle Scholar
  108. Sweeney ZK, Harris SF, Arora N, Javanbakht H, Li Y, Fretland J, Davidson JP, Billedeau JR, Gleason SK, Hirschfeld D, Kennedy-Smith JJ, Mirzadegan T, Roetz R, Smith M, Sperry S, Suh JM, Wu J, Tsing S, Villasenor AG, Paul A, Su G, Heilek G, Hang JQ, Zhou AS, Jernelius JA, Zhang F-J, Klumpp K (2008) Design of annulated pyrazoles as inhibitors of HIV-1 reverse transcriptase. J Med Chem 51:7449–7458PubMedCrossRefGoogle Scholar
  109. Takabatake E, Kodama R, Tanaka Y, Dohmori R, Tachizawa H, Naito T (1970) The metabolic fate of 1-(4-methoxy-6-methyl-2-pyrimidinyl)-3-methyl-5-methoxypyrazole (mepirizole, DA-398) in rats and rabbits. Chem Pharm Bull 18:1900–1907PubMedCrossRefGoogle Scholar
  110. Tanitame A, Oyamada Y, Ofuji K, Fujimoto M, Iwai N, Hiyama Y, Suzuki K, Ito H, Terauchi H, Kawasaki M, Nagai K, Wachi M, Yamagishi J (2004) Synthesis and antibacterial activity of a novel series of potent DNA gyrase inhibitors. Pyrazole derivatives. J Med Chem 47:3693–3699PubMedCrossRefGoogle Scholar
  111. Tharmaraj P, Kodimunthiri D, Sheela CD, Priya CS (2009) Synthesis, spectral studies and antibacterial activity of Cu(II), Co(II) and Ni(II) complexes of 1-(2-hydroxyphenyl)-3-phenyl-2-propan-1-one, N2-[(3,5-diemthyl-1H-pyrazol-1-yl)methyl]hydrazone. J Serb Chem Soc 74:927–938CrossRefGoogle Scholar
  112. Theorell H, Yonetani T (1963) Liver alcohol dehydrogenase-DPN-pyrazole complex: a model of a ternary intermediate in the enzyme reaction. Biochem Z 338:537–553PubMedGoogle Scholar
  113. Theorell H, Yonetani T, Sjoberg B (1969) On the effects of some heterocyclic compounds on the enzymatic activity of liver alcohol dehydrogenase. Acta Chem Scand 23:255–260PubMedCrossRefGoogle Scholar
  114. Tobe ML, Khokhar AR (1977) Structure, activity, reactivity and solubility relationships of platinum diamine complexes. J Clin Hematol Oncol 7:114–137Google Scholar
  115. Vitolo MJ, Marquez VE, Hurtado I (1978) trans-2,3b,4,5,7,8b,9,10-Octahydronaphtho[1,2-c:5,6-c']dipyrazole, a new orally active antiallergic compound. J Med Chem 21:692–694Google Scholar
  116. Wheate NJ, Collins JG (2003) Multi-nuclear platinum complexes as anti-cancer drugs. Coord Chem Rev 241:133–145CrossRefGoogle Scholar
  117. Wheate NJ, Cullinane C, Webster LK, Collins JG (2001) Synthesis, cytotoxicity, cell uptake and DNA interstrand cross-linking of 4,4-dipyrazolylmethane-linked multinuclear platinum anti-cancer complexes. Anticancer Drug Des 16:91–98PubMedGoogle Scholar
  118. Wu L, Song B, Bhadury PS, Yang S, Hu D, Jin L (2011) Synthesis and antiviral activity of novel pyrazole amides containing α-aminophosphonate moiety. J Heterocycl Chem 48:389–396CrossRefGoogle Scholar
  119. Zhang Y, Zhang L, Liu L, Guo J, Wu D, Xu G, Wang X, Jia D (2010) Anticancer activity, structure, and theoretical calculation of N-(1-phenyl-3-methyl-4-propyl-pyrazolone-5)-salicylidene hydrazone and its copper(II) complex. Inorg Chim Acta 363:289–293CrossRefGoogle Scholar
  120. Zhou H-B, Sheng S, Compton DR, Kim Y, Joachimiak A, Sharma S, Carlson KE, Katzenellenbogen BS, Nettles KW, Greene GL, Katzenellenbogen JA (2007) Structure-guided optimization of estrogen receptor binding affinity and antagonist potency of pyrazolopyrimidines with basic side chains. J Med Chem 50:399–403PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  1. 1.Advanced Materials DivisionMintekRandburgSouth Africa
  2. 2.Department of ChemistryUniversity of JohannesburgAuckland ParkSouth Africa

Personalised recommendations