Advertisement

BioMetals

, Volume 24, Issue 3, pp 401–410 | Cite as

Chromium resistance strategies and toxicity: what makes Ochrobactrum tritici 5bvl1 a strain highly resistant

  • Paula Vasconcelos Morais
  • Rita Branco
  • Romeu Francisco
Article

Abstract

Large-scale industrial use of chromium (Cr) resulted in widespread environmental contamination with hexavalent chromium (Cr(VI)). The ability of microorganisms to survive in these environments and detoxify chromate requires the presence of specific resistance systems. Several Cr(VI) resistant species, belonging to a variety of genera, have been isolated in recent years. Ochrobactrum tritici strain 5bvl1 is a model for a highly Cr(VI)-resistant and reducing microorganism, with different strategies to cope with chromium. The strain contains the transposon-located (TnOtChr) chromate resistance genes chrB, chrA, chrC, chrF. The chrB and chrA genes were found to be essential for the establishment of high resistance but not chrC or chrF genes. Other mechanisms involved in chromium resistance in this strain were related to strategies such as specific or unspecific Cr(VI) reduction, free-radical detoxifying activities, and repairing DNA damage. Expression of the chrB, chrC or chrF genes was related to increased resistance to superoxide-generating agents. Genetic analyses also showed that, the ruvB gene is related to chromium resistance in O. tritici 5bvl1. The RuvABC complex probably does not form when ruvB gene is interrupted, and the repair of DNA damage induced by chromium is prevented. Aerobic or anaerobic chromate reductase activity and other unspecific mechanisms for chromium reduction have been identified in different bacteria. In the strain O. tritici 5bvl1, several unspecific mechanisms were found. Dichromate and chromate have different effects on the physiology of the chromium resistant strains and dichromate seems to be more toxic. Toxicity of Cr(VI) was evaluated by following growth, reduction, respiration, glucose uptake assays and by comparing cell morphology.

Keywords

Chromium Chromate Dichromate Toxicity Resistant bacteria 

Notes

Acknowledgments

This research was founded by Fundação para a Ciência e Tecnologia (FCT), Portugal (PTDC/MAR/109057/2008). Rita Branco was supported by PostDoc grant from FCT (SFRH/BPD/48330/2008).

References

  1. Ackerley DF, Gonzalez CF, Park CH, Blake R, Keyhan M, Matin A (2004) Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction. Environ Microbiol 6:851–860PubMedCrossRefGoogle Scholar
  2. Ackerley DF, Barak Y, Lynch SV, Curtin J, Matin A (2006) Effect of chromate stress on Escherichia coli K-12. J Bacteriol 188:3371–3381PubMedCrossRefGoogle Scholar
  3. Aguilar-Barajas E, Paluscio E, Cervantes C, Rensing C (2008) Expression of chromate resistance genes from Shewanella sp. strain ANA-3 in Escherichia coli. FEMS Microbiol Lett 285:97–100PubMedCrossRefGoogle Scholar
  4. Alvarez AH, Moreno-Sánchez R, Cervantes C (1999) Chromate efflux by means of the ChrA chromate resistance protein from Pseudomonas aeruginosa. J Bacteriol 181:7398–7400PubMedGoogle Scholar
  5. Bopp LH, Erlich HL (1988) Chromate resistance and reduction in Pseudomonas fluorescens strain LB300. Arch Microbiol 150:426–431CrossRefGoogle Scholar
  6. Branco R, Morais PV (2006) Identification of genes involved in oxyanions resistance in Ochrobactrum tritici 5bvl1 by transposon mutagenesis. Met Ions Biol Med 9:205–209Google Scholar
  7. Branco R, Alpoim MC, Morais PV (2004) Ochrobactrum tritici strain 5bvl1: characterization of a Cr(VI)-resistant and Cr(VI)-reducing strain. Can J Microbiol 50:697–703PubMedCrossRefGoogle Scholar
  8. Branco R, Chung AP, Johnston T, Gurel V, Morais PV, Zhitkovich A (2008) The chromate-inducible chrBACF operon from the transposable element TnOtChr confers resistance to chromium(VI) and superoxide. J Bacteriol 190:6996–7003PubMedCrossRefGoogle Scholar
  9. Branco R, Francisco R, Chung AP, Morais PV (2009) Identification of an aox system that requires cytochrome c in the highly arsenic-resistant bacterium Ochrobactrum tritici SCII24. Appl Environ Microbiol 75:5141–5147PubMedCrossRefGoogle Scholar
  10. Camargo FAO, Okeke BC, Bento FM, Frankenberger WT (2003) In vitro reduction of hexavalent chromium by a cell-free extract of Bacillus sp. ES 29 stimulated by Cu2+. Appl Microbiol Biotechnol 62:569–573PubMedCrossRefGoogle Scholar
  11. Cervantes C, Campos-Garcia J (2007) Reduction and efflux of chromate by bacteria. In: Nies DH, Silver S (eds) Molecular microbiology of heavy metals. Microbiol monographs, vol 6. Springer-Verlag, Berlin Heidelberg, pp 407–419CrossRefGoogle Scholar
  12. Cervantes C, Ohtake H (1988) Plasmid-determined resistance to chromate in Pseudomonas aeruginosa. FEMS Microbiol Lett 56:173–176CrossRefGoogle Scholar
  13. Cervantes C, Ohtake H, Chu L, Misra TK, Silver S (1990) Cloning, nucleotide sequence, and expression of the chromate resistance determinant of Pseudomonas aeruginosa plasmid pUM505. J Bacteriol 172:287–291PubMedGoogle Scholar
  14. Cervantes C, Campos-Garcia J, Devars S, Gutierrez-Corona F, Loza-Tavera H, Torres-Guzman JC, Moreno-Sanchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347PubMedCrossRefGoogle Scholar
  15. Chardin B, Giudici-Orticoni M-T, De Luca G, Guigliarelli B, Bruschi M (2003) Hydrogenases in sulfate-reducing bacteria function as chromium reductase. Appl Microbiol Biotechnol 63:315–321PubMedCrossRefGoogle Scholar
  16. Chourey K, Wei W, Wan X-F, Thompson DK (2008) Transcriptome analysis reveals response regulator SO2426-mediated gene expression in Shewanella oneidensis MR-1 under chromate challenge. BMC Genomics 9:395PubMedCrossRefGoogle Scholar
  17. Costa M (2003) Potential hazards of hexavalent chromium in our drinking water. Toxicol Appl Pharmacol 188:1–5PubMedCrossRefGoogle Scholar
  18. Daulton TL, Little BJ, Lowe K, Jones-Meehan J (2001) In situ environmental cell-transmission electron microscopy study of microbial reduction of chromium(VI) using electron energy loss spectroscopy. Microsc Microanal 7:470–485PubMedGoogle Scholar
  19. Decorosi F, Tatti E, Mini A, Giovannetti L, Viti C (2009) Characterization of two genes involved in chromate resistance in a Cr(VI)-hyper-resistant bacterium. Extremophiles 13:917–923PubMedCrossRefGoogle Scholar
  20. Díaz-Magaña A, Aguilar-Barajas E, Moreno-Sánchez R, Ramírez-Díaz MI, Riveros-Rosas H, Vargas E, Cervantes C (2009) Short-chain chromate ion transporter proteins from Bacillus subtilis confer chromate resistance in Escherichia coli. J Bacteriol 191(17):5441–5445PubMedCrossRefGoogle Scholar
  21. Dodd IB, Egan JB (1990) Helix-turn-helix DNA-binding motifs prediction. Improved detection of helix-turn-helix DNA-binding motifs in protein sequences. Nucleic Acids Res 18:5019–5026PubMedCrossRefGoogle Scholar
  22. Elangovan R, Abhipsa S, Rohit B, Ligy P, Chandraraj K (2006) Reduction of Cr(VI) by a Bacillus sp. Biotechnol Lett 28:247–252PubMedCrossRefGoogle Scholar
  23. Francisco R, Alpoim MC, Morais PV (2002) Diversity of chromium-resistant and reducing bacteria in a chromium-contaminated activated sludge. J Appl Microbiol 92:837–843PubMedCrossRefGoogle Scholar
  24. Francisco R, Moreno A, Alpoim MC, Morais PV (2006) Cr(VI) effect on Ochrobactrum tritici strain 5bvl1 respiration capacity. Met Ions Biol Med 9:256–259Google Scholar
  25. Francisco R, Moreno A, Morais PV (2010) Different physiological responses to chromate and dichromate in the chromium resistant and reducing strain Ochrobactrum tritici 5bvl1. Biometals 23:713–725PubMedCrossRefGoogle Scholar
  26. Hanukoglu I, Rapoport R (1995) Routes and regulation of NADPH production in steroidogenic mitochondria. Endocr Res 21:231–241PubMedCrossRefGoogle Scholar
  27. He M, Li X, Guo L, Miller SJ, Rensing C, Wang G (2010) Characterization and genomic analysis of chromate resistant and reducing Bacillus cereus strain SJ1. BMC Microbiol 10:221PubMedGoogle Scholar
  28. He M, Li X, Liu H, Miller SJ, Wang G, Rensing C (2011) Characterization and genomic analysis of a highly chromate resistant and reducing bacterial strain Lysinibacillus fusiformis ZC1. J Hazard Mater 185:682–688PubMedCrossRefGoogle Scholar
  29. Henne KL, Nakatsu CH, Thompson DK, Konopka AE (2009) High-level chromate resistance in Arthrobacter sp. strain FB24 requires previously uncharacterized accessory genes. BMC Microbiol 9:199PubMedCrossRefGoogle Scholar
  30. Hu P, Brodie EL, Suuki Y, McAdams HH, Andersen GL (2005) Whole-genome transcriptional analysis of heavy metal stresses in Caulobacter crescentus. J Bacteriol 187:8437–8449PubMedCrossRefGoogle Scholar
  31. Juhnke S, Peitzsch N, Hübener N, Grosse C, Nies DH (2002) New genes involved in chromate resistance in Ralstonia metallidurans strain CH34. Arch Microbiol 179:15–25PubMedCrossRefGoogle Scholar
  32. Kagan VE, Fabisiak JP, Shvedova AA, Tyurina YY, Tyurin VA, Schor NF, Kawai K (2000) Oxidative signalling pathway for externalization of plasma membrane phosphatidylserine during apoptosis. FEBS Lett 477:1–7PubMedCrossRefGoogle Scholar
  33. Konopka A, Zakharova T (1999) Quantification of bacterial lead resistance via activity assays. J Microbiol Methods 37:17–22PubMedCrossRefGoogle Scholar
  34. Kwak YH, Lee DS, Kim HB (2003) Vibrio harveyi nitroreductase is also a chromate reductase. Appl Environ Microbiol 69:4390–4395PubMedCrossRefGoogle Scholar
  35. Li B, Pan D, Zheng J, Cheng Y, Ma X, Huang F, Lin Z (2008) Microscopic investigations of the Cr(VI) uptake mechanism of living Ochrobactrum anthropi. Langmuir 24:9630–9635PubMedCrossRefGoogle Scholar
  36. Llagostera M, Garrido S, Guerrero R, Barbé J (1986) Induction of SOS genes of Escherichia coli by chromium compounds. Environ Mutagen 8:571–577PubMedCrossRefGoogle Scholar
  37. Ma Y-F, Wu J-F, Wang S-Y, Jiang C-Y, Zhang Y, Qi S-W, Liu L, Zhao G-P, Liu S-J (2007) Nucleotide sequence of plasmid pCNB1 from Comamonas strain CNB-1 reveals novel genetic organization and evolution for 4-chloronitrobenzene degradation. Appl Environ Microbiol 77:4477–4483CrossRefGoogle Scholar
  38. McLean J, Beveridge TJ (2001) Chromate reduction by pseudomonad isolated from a site contaminated with chromated copper arsenate. Appl Environ Microbiol 67:1076–1084PubMedCrossRefGoogle Scholar
  39. Mehta T, Coppi MV, Childers SE, Lovley DR (2005) Outer membrane c-type cytochromes required for Fe(III) and Mn(IV) oxide reduction in Geobacter sulfurreducens. Appl Environ Microbiol 71:8634–8641PubMedCrossRefGoogle Scholar
  40. Messer J, Reynolds M, Stoddard L, Zhitkovich A (2006) Causes of DNA single-strand breaks during reduction of chromate by glutathione in vitro and in cells. Free Radic Biol Med 40:1981–1992PubMedCrossRefGoogle Scholar
  41. Miranda AT, González MV, González G, Vargas E, Campos-García J, Cervantes C (2005) Involvement of DNA helicases in chromate resistance by Pseudomonas aeruginosa PAO1. Mutat Res 578:202–209PubMedGoogle Scholar
  42. Mondaca MA, González CL, Zaror CA (1998) Isolation, characterization and expression of a plasmid encoding chromate resistance in Pseudomonas putida KT2441. Lett Appl Microbiol 26:367–371CrossRefGoogle Scholar
  43. Nies A, Nies DH, Silver S (1989) Cloning and Expression of plasmid genes encoding resistances to chromate and cobalt in Alcaligenes eutrophus. J Bacteriol 171:5065–5070PubMedGoogle Scholar
  44. Nies A, Nies DH, Silver S (1990) Nucleotide sequence and expression of a plasmid-encoded chromate resistance determinant from Alcaligenes eutrophus. J Biol Chem 265:5648–5653PubMedGoogle Scholar
  45. Nies DH, Rehbein G, Hoffmann T, Baumann C, Grosse C (2006) Paralogs of genes encoding metal resistance proteins in Cupriavidus metallidurans strain CH34. J Mol Microbiol Biotechnol 11:82–93PubMedCrossRefGoogle Scholar
  46. Peitzsch N, Eberz G, Nies DH (1998) Alcaligenes eutrophus as a bacterial chromate sensor. Appl Environ Microbiol 64:453–458PubMedGoogle Scholar
  47. Pimentel BE, Moreno-Sánchez R, Cervantes C (2002) Efflux of chromate by Pseudomonas aeruginosa cells expressing the ChrA protein. FEMS Microbiol Lett 212:249–254PubMedCrossRefGoogle Scholar
  48. Ramírez-Díaz MI, Díaz-Pérez C, Vargas E, Riveros-Rosas H, Campos-García J Cervantes C (2008) Mechanisms of bacterial resistance to chromium compounds. Biometals. doi: 10.1007/s10534-007-9121-8
  49. Ramsey JD, Xia L, Kendig MW, McCreery RL (2001) Raman spectroscopic analysis of the speciation of dilute chromate solutions. Corros Sci 43:1557–1572CrossRefGoogle Scholar
  50. Reynolds MF, Peterson-Roth EC, Jonhston T, Gurel VM, Menard HL, Zhitkovich A (2009) Rapid DNA double-strand breaks resulting from processing of Cr-DNA crosslinks by both MutS dimers. Cancer Res 69:1071–1079PubMedCrossRefGoogle Scholar
  51. Shen H, Wang Y-T (1993) Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456. Appl Environ Microbiol 59:3771–3777PubMedGoogle Scholar
  52. Sugiyama M (1994) Role of paramagnetic chromium in chromium(VI)-induced damage in cultured mammalian cells. Environ Health Perspect 102(Suppl 3):31–33PubMedCrossRefGoogle Scholar
  53. Tauch A, Schlüter A, Bischoff N, Goesmann A, Meyer F, Pühler A (2003) The 79, 370-bp conjugative plasmid pB4 consists of an IncP-1beta backbone loaded with a chromate resistance transposon, the strA-strB streptomycin resistance gene pair, the oxacillinase gene bla(NPS-1), and a tripartite antibiotic efflux system of the resistance-nodulation-division family. Mol Genet Genomics 268:570–584PubMedGoogle Scholar
  54. Wang PC, Mori J, Toda K, Ohtake H (1990) Membrane-associated chromate reductase activity from Enterobacter cloacae. J Bacteriol 172:1670–1672PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Paula Vasconcelos Morais
    • 1
    • 2
  • Rita Branco
    • 2
  • Romeu Francisco
    • 2
  1. 1.Department of Life SciencesFCTUC, University of CoimbraCoimbraPortugal
  2. 2.IMAR-CMACoimbraPortugal

Personalised recommendations