Skip to main content
Log in

Iron acquisition with the natural siderophore enantiomers pyochelin and enantio-pyochelin in Pseudomonas species

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

The bacterial siderophore pyochelin is composed of salicylate and two cysteine-derived heterocycles, the second of which is modified by reduction and N-methylation during biosynthesis. In Pseudomonas aeruginosa, the first cysteine residue is converted to its D-isoform during thiazoline ring formation, whereas the second cysteine remains in its L-configuration. Stereochemistry is opposite in the Pseudomonas fluorescens siderophore enantio-pyochelin, in which the first ring originates from L-cysteine and the second ring from D-cysteine. Both siderophores promote growth of the producer organism during iron limitation and induce the expression of their biosynthesis genes by activating the transcriptional AraC-type regulator PchR. However, neither siderophore is functional as an iron carrier or as a transcriptional inducer in the other species, demonstrating that both processes are highly stereospecific. Stereospecificity of pyochelin/enantio-pyochelin-mediated iron uptake is ensured at two levels: (i) by the outer membrane siderophore receptors and (ii) by the cytosolic PchR regulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrews SC, Robinson AK, Rodríguez-Quiñones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237

    Article  PubMed  CAS  Google Scholar 

  • Ankenbauer RG, Quan HN (1994) FptA, the Fe(III)-pyochelin receptor of Pseudomonas aeruginosa: a phenolate siderophore receptor homologous to hydroxamate siderophore receptors. J Bacteriol 176:307–319

    PubMed  CAS  Google Scholar 

  • Ankenbauer RG, Toyokuni T, Staley A, Rinehart KL Jr, Cox CD (1988) Synthesis and biological activity of pyochelin, a siderophore of Pseudomonas aeruginosa. J Bacteriol 170:5344–5351

    PubMed  CAS  Google Scholar 

  • Bodilis J, Cornelis P (2009) A survey of TonB-dependent receptors in fluorescent pseudomonads. Environ Microbiol Rep 1:256–262

    Article  Google Scholar 

  • Braud A, Hannauer M, Mislin GLA, Schalk IJ (2009) The Pseudomonas aeruginosa pyochelin-iron uptake pathway and its metal specificity. J Bacteriol 191:3517–3525

    Article  PubMed  CAS  Google Scholar 

  • Budzikiewicz H (2004) Siderophores of the Pseudomonadaceae sensu stricto (fluorescent and non-fluorescent Pseudomonas spp.). Fortschr Chem Org Naturst 87:81–237

    PubMed  CAS  Google Scholar 

  • Castignetti D (1997) Probing of Pseudomonas aeruginosa, Pseudomonas aureofaciens, Burkholderia (Pseudomonas) cepacia, Pseudomonas fluorescens, and Pseudomonas putida with the ferripyochelin receptor A gene and the synthesis of pyochelin in Pseudomonas aureofaciens, Pseudomonas fluorescens, and Pseudomonas putida. Curr Microbiol 34:250–257

    Article  PubMed  CAS  Google Scholar 

  • Cobessi D, Celia H, Pattus F (2005) Crystal structure at high resolution of ferric-pyochelin and its membrane receptor FptA from Pseudomonas aeruginosa. J Mol Biol 352:893–904

    Article  PubMed  CAS  Google Scholar 

  • Cornelis P (2010) Iron uptake and metabolism in pseudomonads. Appl Microbiol Biotechnol 86:1637–1645

    Article  PubMed  CAS  Google Scholar 

  • Cox CD (1980) Iron uptake with ferripyochelin and ferric citrate by Pseudomonas aeruginosa. J Bacteriol 142:581–587

    PubMed  CAS  Google Scholar 

  • Cox CD, Graham R (1979) Isolation of an iron-binding compound from Pseudomonas aeruginosa. J Bacteriol 137:357–364

    PubMed  CAS  Google Scholar 

  • Cox CD, Rinehart KL, Moore ML, Cook JC (1981) Pyochelin: novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa. Proc Natl Acad Sci USA 78:4256–4260

    Article  PubMed  CAS  Google Scholar 

  • DeClue MS, Baldridge KK, Künzler DE, Kast P, Hilvert D (2005) Isochorismate pyruvate lyase: a pericyclic reaction mechanism? J Am Chem Soc 127:15002–15003

    Article  PubMed  CAS  Google Scholar 

  • Drechsel H, Jung G, Winkelmann G (1992) Stereochemical characterization of rhizoferrin and identification of its dehydration products. Biometals 5:141–148

    Article  CAS  Google Scholar 

  • Escolar L, Perez-Martin J, de Lorenzo V (1999) Opening the iron box: transcriptional metalloregulation by the Fur protein. J Bacteriol 181:6223–6229

    PubMed  CAS  Google Scholar 

  • Gaille C, Kast P, Haas D (2002) Salicylate biosynthesis in Pseudomonas aeruginosa. J Biol Chem 277:21768–21775

    Article  PubMed  CAS  Google Scholar 

  • Gaille C, Reimmann C, Haas D (2003) Isochorismate synthase (PchA), the first and rate-limiting enzyme in salicylate biosynthesis of Pseudomonas aeruginosa. J Biol Chem 278:16893–16898

    Article  PubMed  CAS  Google Scholar 

  • Guerinot ML (1994) Microbioal iron transport. Annu Rev Microbiol 48:743–772

    Article  PubMed  CAS  Google Scholar 

  • Harrison AJ, Yu M, Gårdenborg T, Middleditch M, Ramsay RJ, Baker EN, Lott JS (2006) The structure of MbtI from Mycobacterium tuberculosis, the first enzyme in the biosynthesis of the siderophore mycobactin, reveals it to be a salicylate synthase. J Bacteriol 188:6081–6091

    Article  PubMed  CAS  Google Scholar 

  • Hayen H, Volmer DA (2006) Different iron-chelating properties of pyochelin diastereoisomers revealed by LC/MS. Anal Bioanal Chem 385:606–611

    Article  PubMed  CAS  Google Scholar 

  • Heinrichs DE, Poole K (1993) Cloning and sequence analysis of a gene (pchR) encoding an AraC family activator of pyochelin and ferripyochelin receptor synthesis in Pseudomonas aeruginosa. J Bacteriol 175:5882–5889

    PubMed  CAS  Google Scholar 

  • Heinrichs DE, Poole K (1996) PchR, a regulator of ferripyochelin receptor gene (fptA) expression in Pseudomonas aeruginosa, functions both as an activator and a repressor. J Bacteriol 178:2586–2592

    PubMed  CAS  Google Scholar 

  • Hoegy F, Lee X, Noel S, Rognan D, Mislin GL, Reimmann C, Schalk IJ (2009) Stereospecificity of the siderophore pyochelin outer membrane transporters in fluorescent pseudomonads. J Biol Chem 284:14949–14957

    Article  PubMed  CAS  Google Scholar 

  • Ino A, Murabayashi A (2001) Synthetic studies of thiazoline and thiazolidine-containing natural products. Part 3: total synthesis and absolute configuration of the siderophore yersiniabactin. Tetrahedron 57:1897–1902

    Article  CAS  Google Scholar 

  • Kerbarh O, Ciulli A, Howard NI, Abell C (2005) Salicylate biosynthesis: overexpression, purification, and characterization of Irp9, a bifunctional salicylate synthase from Yersinia enterocolitica. J Bacteriol 187:5061–5066

    Article  PubMed  CAS  Google Scholar 

  • Kerbarh O, Chirgadze DY, Blundell TL, Abell C (2006) Crystal structures of Yersinia enterocolitica salicylate synthase and its complex with the reaction products salicylate and pyruvate. J Mol Biol 357:524–534

    Article  PubMed  CAS  Google Scholar 

  • Klumpp C, Burger A, Mislin GL, Abdallah MA (2005) From a total synthesis of cepabactin and its 3:1 ferric complex to the isolation of a 1:1:1 mixed complex between iron(III), cepabactin and pyochelin. Bioorg Med Chem Lett 15:1721–1724

    Article  PubMed  CAS  Google Scholar 

  • Köster W (2001) ABC transporter-mediated uptake of iron, siderophores, heme and vitamin B12. Res Microbiol 152:291–301

    Article  PubMed  Google Scholar 

  • Künzler DE, Sasso S, Gamper M, Hilvert D, Kast P (2005) Mechanistic insights into the isochorismate pyruvate-lyase activity of the catalytically promiscuous PchB from combinatorial mutagenesis and selection. J Biol Chem 280:32827–32834

    Article  PubMed  Google Scholar 

  • Liu PV, Shokrani F (1978) Biological activities of pyochelins: iron-chelating agents of Pseudomonas aeruginosa. Infect Immun 22:878–890

    PubMed  CAS  Google Scholar 

  • Meyer J-M (2000) Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch Microbiol 174:135–142

    Article  PubMed  CAS  Google Scholar 

  • Michel L, Gonzalez N, Jagdeep S, Nguyen-Ngoc T, Reimmann C (2005) PchR-box recognition by the AraC-type regulator PchR of Pseudomonas aeruginosa requires the siderophore pyochelin as an effector. Mol Microbiol 58:495–509

    Article  PubMed  CAS  Google Scholar 

  • Michel L, Bachelard A, Reimmann C (2007) Ferripyochelin uptake genes are involved in pyochelin-mediated signalling in Pseudomonas aeruginosa. Microbiology 153:1508–1518

    Article  PubMed  CAS  Google Scholar 

  • Münzinger M, Taraz K, Budzikiewicz H, Drechsel H, Heymann P, Winkelmann G, Meyer J-M (1999) S,S-rhizoferrin (enantio-rhizoferrin)—a siderophore of Ralstonia (Pseudomonas) pickettii DSM 6297—the optical antipode of R,R-rhizoferrin isolated from fungi. Biometals 12:189–193

    Article  Google Scholar 

  • Namiranian S, Richardson DJ, Russell DA, Sodeau JR (1997) Excited state properties of the siderophore pyochelin and its complex with zinc ions. Photochem Photobiol 65:777–782

    Article  PubMed  CAS  Google Scholar 

  • Ó Cuív P, Clarke P, Lynch D, O’Connell M (2004) Identification of rhtX and fptX, novel genes encoding proteins that show homology and function in the utilization of the siderophores rhizobactin 1021 by Sinorhizobium meliloti and pyochelin by Pseudomonas aeruginosa, respectively. J Bacteriol 186:2996–3005

    Article  Google Scholar 

  • Ochsner UA, Vasil AI, Vasil ML (1995) Role of the ferric uptake regulator of Pseudomonas aeruginosa in the regulation of siderophores and exotoxin A expression: purification and activity on iron-regulated promoters. J Bacteriol 177:7194–7201

    PubMed  CAS  Google Scholar 

  • Patel HM, Walsh CT (2001) In vitro reconstitution of the Pseudomonas aeruginosa nonribosomal peptide synthesis of pyochelin: characterization of backbone tailoring thiazoline reductase and N-methyltransferase activities. Biochemistry 40:9023–9031

    Article  PubMed  CAS  Google Scholar 

  • Patel HM, Tao J, Walsh CT (2003) Epimerization of an L-cysteinyl to a D-cysteinyl residue during thiazoline ring formation in siderophore chain elongation by pyochelin synthetase from Pseudomonas aeruginosa. Biochemistry 42:10514–10527

    Article  PubMed  CAS  Google Scholar 

  • Paulsen IT, Press CM, Ravel J, Kobayashi DY, Myers GSA et al (2005) Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol 23:873–878

    Article  PubMed  CAS  Google Scholar 

  • Pelludat C, Brem D, Heesemann J (2003) Irp9, encoded by the high-pathogenicity island of Yersinia enterocolitica, is able to convert chorismate into salicylate, the precursor of the siderophore yersiniabactin. J Bacteriol 185:5648–5653

    Article  PubMed  CAS  Google Scholar 

  • Quadri LEN, Keating TA, Patel HM, Walsh CT (1999) Assembly of the Pseudomonas aeruginosa nonribosomal peptide siderophore pyochelin: in vitro reconstitution of aryl-4,2-bisthiazoline synthetase activity from PchD, PchE and PchF. Biochemistry 38:14941–14954

    Article  PubMed  CAS  Google Scholar 

  • Reimmann C, Serino L, Beyeler M, Haas D (1998) Dihydroaeruginoic acid synthetase and pyochelin synthetase, products of the pchEF genes are induced by extracellular pyochelin in Pseudomonas aeruginosa. Microbiology 144:3135–3148

    Article  PubMed  CAS  Google Scholar 

  • Reimmann C, Patel HM, Serino L, Barone M, Walsh CT, Haas D (2001) Essential PchG-dependent reduction in pyochelin biosynthesis of Pseudomonas aeruginosa. J Bacteriol 183:813–820

    Article  PubMed  CAS  Google Scholar 

  • Reimmann C, Patel HM, Walsh CT, Haas D (2004) PchC thioesterase optimizes nonribosomal biosynthesis of the peptide siderophore pyochelin in Pseudomonas aeruginosa. J Bacteriol 186:6367–6373

    Article  PubMed  CAS  Google Scholar 

  • Rinehart KL, Staley AL, Wilson SR, Ankenbauer RG, Cox CD (1995) Stereochemical assignment of the pyochelins. J Org Chem 60:2786–2791

    Article  CAS  Google Scholar 

  • Schlegel K, Taraz K, Budzikiewicz H (2004) The stereoisomers of pyochelin, a siderophore of Pseudomonas aeruginosa. Biometals 17:409–414

    Article  PubMed  CAS  Google Scholar 

  • Schlegel K, Lex J, Taraz K, Budzikiewicz (2006) The X-ray structure of the pyochelin Fe3+ complex. Z Naturforsch 61c:263–266

    Google Scholar 

  • Schmidli-Sacherer P, Keel C, Défago G (1997) The global regulator GacA of Pseudomonas fluorescens CHA0 is required for suppression of root diseases in dicotyledons but not in Gramineae. Plant Pathol 46:80–90

    Article  CAS  Google Scholar 

  • Serino L, Reimmann C, Baur H, Beyeler M, Visca P, Haas D (1995) Structural genes for salicylate biosynthesis from chorismate in Pseudomonas aeruginosa. Mol Gen Genet 249:217–228

    Article  PubMed  CAS  Google Scholar 

  • Serino L, Reimmann C, Visca P, Beyeler M, Della Chiesa V, Haas D (1997) Biosynthesis of pyochelin and dihydroaeruginoic acid requires the iron-regulated pchDCBA operon in Pseudomonas aeruginosa. J Bacteriol 179:248–257

    PubMed  CAS  Google Scholar 

  • Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P et al (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964

    Article  PubMed  CAS  Google Scholar 

  • Terano H, Nomoto K, Takase S (2002) Siderophore production and induction of iron-regulated proteins by a microorganism from rhizosphere of barley. Biosci Biotechnol Biochem 66:2471–2473

    Article  PubMed  CAS  Google Scholar 

  • Thieken A, Winkelmann G (1992) Rhizoferrin: a complexone type siderophore of the Mucorales and Entomophthorales (Zygomycetes). FEMS Microbiol Lett 94:37–42

    Article  CAS  Google Scholar 

  • Thomas MS (2007) Iron acquisition mechanisms of the Burkholderia cepacia complex. Biometals 20:431–452

    Article  PubMed  CAS  Google Scholar 

  • Tseng C-F, Burger A, Mislin GLA, Schalk IJ, Yu SS-F, Cahn SI, Abdallah MA (2006) Bacterial siderophores: the solution stoichiometry and coordination of the Fe(III) complexes of pyochelin and related compounds. J Biol Inorg Chem 11:419–432

    Article  PubMed  CAS  Google Scholar 

  • Visca P, Colotti G, Serino L, Verzili D, Orsi N, Chiancone E (1992) Metal regulation of siderophore synthesis in Pseudomonas aeruginosa and functional effects of siderophore-metal complexes. Appl Environ Microbiol 58:2886–2893

    PubMed  CAS  Google Scholar 

  • Wandersman C, Delepelaire P (2004) Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 58:611–647

    Article  PubMed  CAS  Google Scholar 

  • Youard ZA, Reimmann C (2010) Stereospecific recognition of pyochelin and enantio-pyochelin by the PchR proteins in fluorescent pseudomonads. Microbiology 156:1772–1782

    Article  PubMed  CAS  Google Scholar 

  • Youard ZA, Mislin GLA, Majcherczyk PA, Schalk IJ, Reimmann C (2007) Pseudomonas fluorescens CHA0 produces enantio-pyochelin, the optical antipode of the Pseudomonas aeruginosa siderophore pyochelin. J Biol Chem 282:35546–35553

    Article  PubMed  CAS  Google Scholar 

  • Zaitseva J, Lu J, Olechoski KL, Lamb AL (2006) Two crystal structures of the isochorismate pyruvate-lyase from Pseudomonas aeruginosa. J Biol Chem 281:33441–33449

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Dieter Haas for critical reading of the manuscript. This work was supported by the Swiss National Science Foundation for Scientific Research (Project 31-113955/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia Reimmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Youard, Z.A., Wenner, N. & Reimmann, C. Iron acquisition with the natural siderophore enantiomers pyochelin and enantio-pyochelin in Pseudomonas species. Biometals 24, 513–522 (2011). https://doi.org/10.1007/s10534-010-9399-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-010-9399-9

Keywords

Navigation