Skip to main content
Log in

Bacterial gold sensing and resistance

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Gold ions are mobilized and disseminated through the environment and enter into the cells by non-specific intake. To avoid deleterious effect that occurs even at very low concentrations, bacteria such as Salmonella enterica and Cupriavidus metallidurans use Au-specific MerR-type transcriptional regulators to detect the presence of these toxic ions, and control the expression of specific resistance factors. In contrast to the related copper sensor CueR, the Au-selective metalloregulatory proteins are able to distinguish Au(I) from Cu(I) or Ag(I). This is achieved by finely tuning a single dithiolate metal coordination with conserved cysteine residues at the metal binding site of the proteins to lower the affinity for Cu(I) in comparison to the Cu-sensors, while maintaining or even increasing the affinity for Au(I). In Salmonella, GolS not only privileges the binding of Au(I) over Cu(I) or Ag(I), but also distinguishes its target recognition sites in its regulated promoters minimizing cross-activation of CueR-controlled operators. In this sense, the presence of a selective Au sensory devise would allow species harbouring resident Cu-homeostasis systems to eliminate the toxic ion without affecting Cu acquisition in Au rich environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ansari AZ, Chael ML, O’Halloran TV (1992) Allosteric underwinding of DNA is a critical step in positive control of transcription by Hg-MerR. Nature 355:87–89

    Article  PubMed  CAS  Google Scholar 

  • Ansari AZ, Bradner JE, O’Halloran TV (1995) DNA-bend modulation in a repressor-to-activator switching mechanism. Nature 374:371–375

    Article  PubMed  CAS  Google Scholar 

  • Benedek TG (2004) The history of gold therapy for tuberculosis. J Hist Med Allied Sci 59:50–89

    Article  PubMed  Google Scholar 

  • Brown NL, Stoyanov JV, Kidd SP, Hobman JL (2003) The MerR family of transcriptional regulators. FEMS Microbiol Rev 27:145–163

    Article  PubMed  CAS  Google Scholar 

  • Carotti S, Marcon G, Marussich M, Mazzei T, Messori L, Mini E, Orioli P (2000) Cytotoxicity and DNA binding properties of a chloro glycylhistidinate gold(III) complex (GHAu). Chem Biol Interact 125:29–38

    Article  PubMed  CAS  Google Scholar 

  • Changela A, Chen K, Xue Y, Holschen J, Outten CE, O’Halloran TV, Mondragon A (2003) Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 301:1383–1387

    Article  PubMed  CAS  Google Scholar 

  • Checa SK, Espariz M, Pérez Audero ME, Botta PE, Spinelli SV, Soncini FC (2007) Bacterial sensing of and resistance to gold salts. Mol Microbiol 63:1307–1318

    Article  PubMed  CAS  Google Scholar 

  • Chen PR, He C (2008) Selective recognition of metal ions by metalloregulatory proteins. Curr Opin Chem Biol 12:214–221

    Article  PubMed  CAS  Google Scholar 

  • Chen K, Yuldasheva S, Penner-Hahn JE, O’Halloran TV (2003) An atypical linear Cu(I)-S2 center constitutes the high-affinity metal-sensing site in the CueR metalloregulatory protein. J Am Chem Soc 125:12088–12089

    Article  PubMed  CAS  Google Scholar 

  • Chen P, Andoy NM, Benitez JJ, Keller AM, Panda D, Gao F (2010) Tackling metal regulation and transport at the single-molecule level. Nat Prod Rep 27:757–767

    Article  PubMed  CAS  Google Scholar 

  • Conroy O, Kim EH, McEvoy MM, Rensing C (2010) Differing ability to transport nonmetal substrates by two RND-type metal exporters. FEMS Microbiol Lett 308:115–122

    PubMed  CAS  Google Scholar 

  • Eisler R (2004) Gold concentrations in abiotic materials, plants, and animals: a synoptic review. Environ Monit Assess 90:73–88

    Article  PubMed  CAS  Google Scholar 

  • Espariz M, Checa SK, Pérez Audero ME, Pontel LB, Soncini FC (2007) Dissecting the Salmonella response to copper. Microbiology 153:2989–2997

    Article  PubMed  CAS  Google Scholar 

  • Florea L, McClelland M, Riemer C, Schwartz S, Miller W (2003) EnteriX 2003: visualization tools for genome alignments of Enterobacteriaceae. Nucleic Acids Res 31:3527–3532

    Article  PubMed  CAS  Google Scholar 

  • Harrison MD, Jones CE, Solioz M, Dameron CT (2000) Intracellular copper routing: the role of copper chaperones. Trends Biochem Sci 25:29–32

    Article  PubMed  CAS  Google Scholar 

  • Heldwein EE, Brennan RG (2001) Crystal structure of the transcription activator BmrR bound to DNA and a drug. Nature 409:378–382

    Article  PubMed  CAS  Google Scholar 

  • Helmann JD, Soonsanga S, Gabriel S (2007) Metalloregulators: Arbiters of Metal Sufficiency. In: Nies DH, Silver S (eds) Molecular microbiology of heavy metals. Springer-Verlag, Berlin Heidelberg, pp 37–71

    Chapter  Google Scholar 

  • Hobman JL, Wilkie J, Brown NL (2005) A design for life: prokaryotic metal-binding MerR family regulators. Biometals 18:429–436

    Article  PubMed  CAS  Google Scholar 

  • Housecroft CE, Constable EC (2006) Chemistry essex. Pearson Education, UK

    Google Scholar 

  • Janssen PJ, Van HR, Moors H, Monsieurs P, Morin N, Michaux A, Benotmane MA, Leys N, Vallaeys T, Lapidus A, Monchy S, Medigue C, Taghavi S, McCorkle S, Dunn J, van der LD, Mergeay M (2010) The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS One 5:e10433

  • Jian X, Wasinger EC, Lockard JV, Chen LX, He C (2009) Highly sensitive and selective gold(I) recognition by a metalloregulator in Ralstonia metallidurans. J Am Chem Soc 131:10869–10871

    Article  PubMed  CAS  Google Scholar 

  • Julian DJ, Kershaw CJ, Brown NL, Hobman JL (2009) Transcriptional activation of MerR family promoters in Cupriavidus metallidurans CH34. Antonie Van Leeuwenhoek 96:149–159

    Article  PubMed  CAS  Google Scholar 

  • Karthikeyan S, Beveridge TJ (2002) Pseudomonas aeruginosa biofilms react with and precipitate toxic soluble gold. Environ Microbiol 4:667–675

    Article  PubMed  CAS  Google Scholar 

  • Kashefi K, Tor JM, Nevin KP, Lovley DR (2001) Reductive precipitation of gold by dissimilatory Fe(III)-reducing bacteria and archaea. Appl Environ Microbiol 67:3275–3279

    Article  PubMed  CAS  Google Scholar 

  • Kumaraswami M, Newberry KJ, Brennan RG (2010) Conformational plasticity of the coiled-coil domain of BmrR is required for bmr operator binding: the structure of unliganded BmrR. J Mol Biol 398:264–275

    Article  PubMed  CAS  Google Scholar 

  • Levchenko LA, Sadkov AP, Lariontseva NV, Kulikova VS, Shilova AK, Shilov AE (2004) A synthetic Au-rutin complex as a functional model of the active site of the Au-protein from Micrococcus luteus. Dokl Biochem Biophys 394:33–34

    Article  PubMed  CAS  Google Scholar 

  • Lobedanz S, Bokma E, Symmons MF, Koronakis E, Hughes C, Koronakis V (2007) A periplasmic coiled-coil interface underlying TolC recruitment and the assembly of bacterial drug efflux pumps. Proc Natl Acad Sci USA 104:4612–4617

    Article  PubMed  CAS  Google Scholar 

  • Ma Z, Jacobsen FE, Giedroc DP (2009) Coordination chemistry of bacterial metal transport and sensing. Chem Rev 109:4644–4681

    Article  PubMed  CAS  Google Scholar 

  • Monchy S, Benotmane MA, Wattiez R, van Aelst S, Auquier V, Borremans B, Mergeay M, Taghavi S, van der LD, Vallaeys T (2006) Transcriptomic and proteomic analyses of the pMOL30-encoded copper resistance in Cupriavidus metallidurans strain CH34. Microbiology 152:1765–1776

  • Murakami S (2008) Multidrug efflux transporter, AcrB—the pumping mechanism. Curr Opin Struct Biol 18:459–465

    Article  PubMed  CAS  Google Scholar 

  • Newberry KJ, Brennan RG (2004) The structural mechanism for transcription activation by MerR family member multidrug transporter activation, N terminus. J Biol Chem 279:20356–20362

    Article  PubMed  CAS  Google Scholar 

  • Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339

    Article  PubMed  CAS  Google Scholar 

  • Nies DH (2007) Bacterial transition metal homeostasis. In: Nies DH, Silver S (eds) Molecular microbiology of heavy metals. Springer-Verlag, Berlin Heidelberg, pp 117–142

    Chapter  Google Scholar 

  • Nikaido H, Takatsuka Y (2009) Mechanisms of RND multidrug efflux pumps. Biochim Biophys Acta 1794:769–781

    PubMed  CAS  Google Scholar 

  • Nishino K, Latifi T, Groisman EA (2006) Virulence and drug resistance roles of multidrug efflux systems of Salmonella enterica serovar Typhimurium. Mol Microbiol 59:126–141

    Article  PubMed  CAS  Google Scholar 

  • Osman D, Waldron KJ, Denton H, Taylor CM, Grant AJ, Mastroeni P, Robinson NJ, Cavet JS (2010) Copper homeostasis in salmonella is atypical and copper-CueP is a major periplasmic metal complex. J Biol Chem 285:25259–25268

    Google Scholar 

  • Perez Audero ME, Podoroska BM, Ibanez MM, Cauerhff A, Checa SK, Soncini FC (2010) Target transcription binding sites differentiate two groups of MerR-monovalent metal ion sensors. Mol Microbiol 78:853–865

    Article  PubMed  Google Scholar 

  • Pontel LB, Soncini FC (2009) Alternative periplasmic copper-resistance mechanisms in Gram negative bacteria. Mol Microbiol 73:212–225

    Article  PubMed  CAS  Google Scholar 

  • Pontel LB, Pérez Audero ME, Espariz M, Checa SK, Soncini FC (2007) GolS controls the response to gold by the hierarchical induction of Salmonella-specific genes that include a CBA efflux-coding operon. Mol Microbiol 66:814–825

    Article  PubMed  CAS  Google Scholar 

  • Pos KM (2009) Drug transport mechanism of the AcrB efflux pump. Biochim Biophys Acta 1794:782–793

    PubMed  CAS  Google Scholar 

  • Reith F, Lengke MF, Falconer D, Craw D, Southam G (2007) The geomicrobiology of gold. ISME J 1:567–584

    Article  PubMed  CAS  Google Scholar 

  • Reith F, Etschmann B, Grosse C, Moors H, Benotmane MA, Monsieurs P, Grass G, Doonan C, Vogt S, Lai B, Martinez-Criado G, George GN, Nies DH, Mergeay M, Pring A, Southam G, Brugger J (2009) Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans. Proc Natl Acad Sci USA 106:17757–17762

    Article  PubMed  CAS  Google Scholar 

  • Reith F, Fairbrother L, Nolze G, Wilhelmi O, Clode PL, Gregg A, Parsons JE, Wakelin SA, Pring A, Hough R, Southam G, Brugger J (2010) Nanoparticle factories: biofilms hold the key to gold dispersion and nugget formation. Geology 38:843–846

    Article  CAS  Google Scholar 

  • Robinson NJ, Winge DR (2010) Copper metallochaperones. Annu Rev Biochem 79:537–562

    Article  PubMed  CAS  Google Scholar 

  • Saier MH Jr, Yen MR, Noto K, Tamang DG, Elkan C (2009) The transporter classification database: recent advances. Nucleic Acids Res 37:D274–D278

    Article  PubMed  CAS  Google Scholar 

  • Shaw CF III (1999) Gold-based therapeutic agents. Chem Rev 99:2589–2600

    Article  CAS  Google Scholar 

  • Song L, Teng Q, Phillips RS, Brewer JM, Summers AO (2007) 19F-NMR reveals metal and operator-induced allostery in MerR. J Mol Biol 371:79–92

    Article  PubMed  CAS  Google Scholar 

  • Southam G, Lengke MF, Fairbrother L, Reith F (2009) The biogeochemistry of gold. Elements 5:303–308

    Article  CAS  Google Scholar 

  • Stoyanov JV, Brown NL (2003) The Escherichia coli copper-responsive copA promoter is activated by gold. J Biol Chem 278:1407–1410

    Article  PubMed  CAS  Google Scholar 

  • Summers AO (2009) Damage control: regulating defenses against toxic metals and metalloids. Curr Opin Microbiol 12:138–144

    Article  PubMed  CAS  Google Scholar 

  • Van HR, Monchy S, Leys N, Mergeay M (2009) New mobile genetic elements in Cupriavidus metallidurans CH34, their possible roles and occurrence in other bacteria. Antonie Van Leeuwenhoek 96:205–226

    Google Scholar 

  • Watanabe S, Kita A, Kobayashi K, Miki K (2008) Crystal structure of the [2Fe-2S] oxidative-stress sensor SoxR bound to DNA. Proc Natl Acad Sci USA 105:4121–4126

    Article  PubMed  CAS  Google Scholar 

  • Williams-Jones AE, Bowell RJ, Migdisov AA (2009) Gold in solution. Elements 5:281–287

    Article  CAS  Google Scholar 

  • Witkiewicz PL, Shaw CF (1981) Oxidative cleavage of peptide and protein disulphide bonds by gold(III): a mechanism for gold toxicity. J Chem Soc Chem Comm 21:1111–1114

    Article  Google Scholar 

Download references

Acknowledgments

We thank E. García Véscovi, C. Risso, and M. E. Castelli, for critical reading of the manuscript, and L. B. Pontel and M. M. Ibáñez for helpful suggestions and comments. This work was supported by grants from Agencia Nacional de Promoción Científica y Tecnológica and from the National Research Council CONICET to S.K.C. and F.C.S. S.K.C. and F.C.S. are career investigators of CONICET. F.C.S. is also e career investigator of the Rosario National University Research Council (CIUNR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando C. Soncini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Checa, S.K., Soncini, F.C. Bacterial gold sensing and resistance. Biometals 24, 419–427 (2011). https://doi.org/10.1007/s10534-010-9393-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-010-9393-2

Keywords

Navigation