, Volume 24, Issue 2, pp 193–213 | Cite as

TonB-dependent outer-membrane proteins and siderophore utilization in Pseudomonas fluorescens Pf-5

  • Sierra L. Hartney
  • Sylvie Mazurier
  • Teresa A. Kidarsa
  • Maria Carolina Quecine
  • Philippe Lemanceau
  • Joyce E. Loper


The soil bacterium Pseudomonas fluorescens Pf-5 produces two siderophores, a pyoverdine and enantio-pyochelin, and its proteome includes 45 TonB-dependent outer-membrane proteins, which commonly function in uptake of siderophores and other substrates from the environment. The 45 proteins share the conserved β-barrel and plug domains of TonB-dependent proteins but only 18 of them have an N-terminal signaling domain characteristic of TonB-dependent transducers (TBDTs), which participate in cell-surface signaling systems. Phylogenetic analyses of the 18 TBDTs and 27 TonB-dependent receptors (TBDRs), which lack the N-terminal signaling domain, suggest a complex evolutionary history including horizontal transfer among different microbial lineages. Putative functions were assigned to certain TBDRs and TBDTs in clades including well-characterized orthologs from other Pseudomonas spp. A mutant of Pf-5 with deletions in pyoverdine and enantio-pyochelin biosynthesis genes was constructed and characterized for iron-limited growth and utilization of a spectrum of siderophores. The mutant could utilize as iron sources a large number of pyoverdines with diverse structures as well as ferric citrate, heme, and the siderophores ferrichrome, ferrioxamine B, enterobactin, and aerobactin. The diversity and complexity of the TBDTs and TBDRs with roles in iron uptake clearly indicate the importance of iron in the fitness and survival of Pf-5 in the environment.


Pyoverdine Iron-acquisition TonB-dependent receptors Pseudomonas fluorescens 



We gratefully acknowledge the contributions of Dimitri Mavrodi in making the pchC mutant of Pf-5, and Harald Gross, Marcella Henkels and Kedy Shen in characterizing the role of orfamide A in the CAS agar assays. We thank Jeff Chang, Martin Schuster, Mark Silby, Johan Leveau and Gail Preston for providing cultures, and Cornelia Reimmann for the gift of authentic enantio-pyochelin. We are also grateful to Steven Giovannoni for advice on phylogenetic analyses, Philip Bronstein for advice on arbitrary PCR, and Jeff Chang and Martin Schuster for reviewing the manuscript. This research was supported by National Research Initiative Competitive Grants 2006-35319-17427 and 2008-35600-18770 from the USDA Cooperative State Research, Education, and Extension Service. We also gratefully acknowledge a fellowship to MCQ from the State of São Paulo Research Foundation (FAPESP), Brazil.

Supplementary material

10534_2010_9385_MOESM1_ESM.doc (1.3 mb)
Supplementary material 1 (DOC 1372 kb)


  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. doi: 10.1093/nar/25.17.3389
  2. Bachmann BO, Ravel J (2009) Methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data. Method Enzymol. doi: 10.1016/S0076-6879(09)04808-3
  3. Barelmann I, Taraz K, Budzikiewicz H, Geoffroy VA, Meyer JM (2002) The structures of the pyoverdins from two Pseudomonas fluorescens strains accepted mutually by their respective producers. Z Naturforsch C 57:9–16PubMedGoogle Scholar
  4. Beiderbeck H, Taraz K, Meyer JM (1999) Revised structures of the pyoverdins from Pseudomonas putida CFBP 2461 and from Pseudomonas fluorescens CFBP 2392. Biometals. doi: 10.1023/A:1009227520314
  5. Bigelow HR, Petrey DS, Liu J, Przybylski D, Rost B (2004) Predicting transmembrane beta-barrels in proteomes. Nucleic Acids Res. doi: 10.1093/nar/gkh580
  6. Bitter W, Marugg JD, de Weger LA, Tommassen J, Weisbeek PJ (1991) The ferric-pseudobactin receptor PupA of Pseudomonas putida WCS358: homology to TonB-dependent Escherichia coli receptors and specificity of the protein. Mol Microbiol. doi: 10.1111/j.1365-2958.1991.tb00736.x
  7. Blanvillain S, Meyer D, Boulanger A, Lautier M, Guynet C, Denancé N, Vasse J, Lauber E, Arlat M (2007) Plant carbohydrate scavenging through TonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria. PLoS ONE. doi: 10.1371/journal.pone.0000224
  8. Brodhagen M, Henkels MD, Loper JE (2004) Positive autoregulation and signaling properties of pyoluteorin, an antibiotic produced by the biological control organism Pseudomonas fluorescens Pf-5. Appl Environ Microbiol. doi: 10.1128/AEM.70.3.1758-1766.2004
  9. Budzikiewicz H (1997) Siderophores of fluorescent pseudomonads. Z Naturforsch C 52:713–720PubMedGoogle Scholar
  10. Budzikiewicz H (2004) Siderophores of the Pseudomonadaceae sensu stricto (fluorescent and non-fluorescent Pseudomonas spp.). Fortschr Chem Org Naturst 87:81–237PubMedGoogle Scholar
  11. Bultreys A, Gheysen I, Wathelet B, Schäfer M, Budzikiewicz H (2004) The pyoverdins of Pseudomonas syringae and Pseudomonas cichorii. Z Naturforsch C 59:613–618PubMedGoogle Scholar
  12. Callahan JH, Cook KD (1984) Mechanism of surfactant-induced changes in the visible spectrometry of metal-Chrome Azurol S complexes. Anal Chem 56:1632–1640PubMedCrossRefGoogle Scholar
  13. Choi KH, Schweizer HP (2005) An improved method for rapid generation of unmarked Pseudomonas aeruginosa deletion mutants. BMC Microbiol. doi: 10.1186/1471-2180-5-30
  14. Cobessi D, Celia H, Folschweiller N, Schalk IJ, Abdallah MA, Pattus F (2005) The crystal structure of the pyoverdine outer membrane receptor FpvA from Pseudomonas aeruginosa at 3.6 angstrom resolution. J Mol Biol. doi: 10.1016/j.jmb.2005.01.021
  15. Cornelis P (2010) Iron uptake and metabolism in pseudomonads. Appl Microbiol Biotechnol. doi: 10.1007/s00253-010-2550-2
  16. Cornelis P, Bodilis J (2009) A survey of TonB-dependent receptors in fluorescent pseudomonads. Environ Microbiol Rep. doi: 10.1111/j.1758-2229.2009.00041.x
  17. Cornelis P, Matthijs S (2002) Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environ Microbiol. doi: 10.1046/j.1462-2920.2002.00369.x
  18. Cornelis P, Baysse C, Matthijs S (2008) Iron uptake in Pseudomonas. In: Cornelis P (ed) Pseudomonas: genomics and molecular biology. Caister Academic Press, Norfolk, UK, pp 213–235Google Scholar
  19. Cornelis P, Matthijs S, Van Oeffelen L (2009) Iron uptake regulation in Pseudomonas aeruginosa. Biometals. doi: 10.1007/s10534-008-9193-0
  20. Costa JM, Loper JE (1994) Characterization of siderophore production by the biological control agent Enterobacter cloacae. Mol Plant Microbe Interact 7:440–448CrossRefGoogle Scholar
  21. Cuiv PO, Clarke P, O’Connell M (2006) Identification and characterization of an iron-regulated gene, chtA, required for the utilization of the xenosiderophores aerobactin, rhizobactin 1021 and schizokinen by Pseudomonas aeruginosa. Microbiology. doi: 10.1099/mic.0.28552-0
  22. Das S, Noe JC, Paika S, Kitten T (2005) An improved arbitrary primed PCR method for rapid characterization of transposon insertion sites. J Microbiol Methods. doi: 10.1016/j.mimet.2005.02.011
  23. Dean CR, Poole K (1993) Expression of the ferric enterobactin receptor (PfeA) of Pseudomonas aeruginosa: involvement of a two-component regulatory system. Mol Microbiol. doi: 10.1111/j.1365-2958.1993.tb01654.x
  24. Dean CR, Neshat S, Poole K (1996) PfeR, an enterobactin-responsive activator of ferric enterobactin receptor gene expression in Pseudomonas aeruginosa. J Bacteriol 178:5361–5369PubMedGoogle Scholar
  25. Demange P, Wendenbaum S, Linget C, Mertx C, Cung MT, Dell A, Abdallah MA (1990) Bacterial siderophores: Structure and NMR assignment of pyoverdins Pa, siderophores of Pseudomonas aeruginosa ATCC 15692. Biol Met 3:155–170CrossRefGoogle Scholar
  26. Djavaheri M (2007) Iron-regulated metabolites of plant growth promoting Pseudomonas fluorescens WCS374: their role in induced systemic resistance. Dissertation, Universiteit UtrechtGoogle Scholar
  27. Eisenbeis S, Lohmiller S, Valdebenito M, Leicht S, Braun V (2008) NagA-dependent uptake of N-acetyl-glucosamine and N-acetyl-chitin oligosaccharides across the outer membrane of Caulobacter crescentus. J Bacteriol. doi: 10.1128/jb.00194-08
  28. Ferguson AD, Amezcua CA, Halabi NM, Chelliah Y, Rosen MK, Ranganathan R, Deisenhofer J (2007) Signal transduction pathway of TonB-dependent transporters. Proc Natl Acad Sci USA. doi: 10.1073/pnas.0609887104
  29. Fernández DU, Fuchs R, Taraz K, Budzikiewicz H, Munsch P, Meyer JM (2001) The structure of a pyoverdine produced by a Pseudomonas tolaasii-like isolate. Biometals. doi: 10.1023/A:1016626322674
  30. Fernández DU, Geoffroy V, Schäfer M, Meyer JM, Budzikiewicz H (2003) Structure revision of several pyoverdins produced by plant-growth promoting and plant-deleterious Pseudomonas species. Monatsh Chem 134:1421–1431Google Scholar
  31. Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer ELL, Eddy SR, Bateman A (2010) The Pfam protein families database. Nucleic Acids Res. doi: 10.1093/nar/gkp985
  32. Gaille C, Reimmann C, Haas D (2003) Isochorismate synthase (PchA), the first and rate-limiting enzyme in salicylate biosynthesis of Pseudomonas aeruginosa. J Biol Chem. doi: 10.1074/jbc.M212324200
  33. Ghysels B, Dieu BTM, Beatson SA, Pirnay JP, Ochsner UA, Vasil ML, Cornelis P (2004) FpvB, an alternative type I ferripyoverdine receptor of Pseudomonas aeruginosa. Microbiology. doi: 10.1099/mic.0.27035-0
  34. Gipp S, Hahn J, Taraz K, Budzikiewicz H (1991) Chemical-substances from bacteria. 47. Two pyoverdins from Pseudomonas-aeruginosa R. Z Naturforsch C Biosci 46:534–541Google Scholar
  35. Gross H, Stockwell VO, Henkels MD, Nowak-Thompson B, Loper JE, Gerwick WH (2007) The genomisotopic approach: a systematic method to isolate products of orphan biosynthetic gene clusters. Chem Biol. doi: 10.1016/j.chembiol.2006.11.007
  36. Hannauer M, Barda Y, Mislin GLA, Shanzer A, Schalk IJ (2010) The ferrichrome uptake pathway in Pseudomonas aeruginosa involves an iron release mechanism with acylation of the siderophore and recycling of the modified desferrichrome. J Bacteriol. doi: 10.1128/JB.01539-09
  37. Hassan KA, Johnson A, Shaffer BT, Ren Q, Kidarsa TA, Elbourne LDH, Hartney S, Duboy R, Goebel NC, Zabriskie TM, Paulsen IT, Loper JE (2010) Inactivation of the GacA response regulator in Pseudomonas fluorescens Pf-5 has far-reaching transcriptomic consequences. Environ Microbiol. doi: 10.1111/j.1462-2920.2009.02134.x
  38. Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep. doi: 10.1039/b906679a
  39. Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP (1998) A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene. doi: 10.1016/S0378-1119(98)00130-9
  40. Hoegy F, Lee X, Noel S, Rognan D, Mislin GLA, Reimmann C, Schalk IJ (2009) Stereospecificity of the siderophore pyochelin outer membrane transporters in fluorescent pseudomonads. J Biol Chem. doi: 10.1074/jbc.M900606200
  41. Howell CR, Stipanovic RD (1979) Control of Rhizoctonia solani in cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology 69:480–482CrossRefGoogle Scholar
  42. Huang B, Ru K, Yuan Z, Whitchurch CB, Mattick JS (2004) tonB3 is required for normal twitching motility and extracellular assembly of type IV pili. J Bacteriol. doi: 10.1128/JB.186.13.4387-4389.2004
  43. Jülich M, Taraz K, Budzikiewicz H, Geoffroy V, Meyer JM, Gardan L (2001) The structure of the pyoverdin isolated from various Pseudomonas syringae pathovars. Z Naturforsch C 56:687–694PubMedGoogle Scholar
  44. Kahnert A, Mirleau P, Wait R, Kertesz MA (2002) The LysR-type regulator SftR is involved in soil survival and sulphate ester metabolism in Pseudomonas putida. Environ Microbiol. doi: 10.1046/j.1462-2920.2002.00289.x
  45. King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44:301–307PubMedGoogle Scholar
  46. Koch G, Jimenez PN, Muntendam R, Chen Y, Papaioannou E, Heeb S, Cámara M, Williams P, Cool RH, Quax WJ (2010) The acylase PvdQ has a conserved function among fluorescent Pseudomonas spp. Environ Microbiol Rep. doi: 10.1111/j.1758-2229.2010.00157.x
  47. Koster M, van de Vossenberg J, Leong J, Weisbeek PJ (2006) Identification and characterization of the pupB gene encoding an inducible ferric-pseudobactin receptor of Pseudomonas putida WCS358. Mol Microbiol. doi: 10.1111/j.1365-2958.1993.tb01603.x
  48. Kraus J, Loper JE (1992) Lack of evidence for a role of antifungal metabolite production by Pseudomonas fluorescens Pf-5 in biological control of pythium damping-off of cucumber. Phytopathology 82:264–271CrossRefGoogle Scholar
  49. Lamont IL, Martin LW (2003) Identification and characterization of novel pyoverdine synthesis genes in Pseudomonas aeruginosa. Microbiology. doi: 10.1099/mic.0.26085-0
  50. Liberati NT, Urbach JM, Miyata S, Lee DG, Drenkard E, Wu G, Villanueva J, Wei T, Ausubel FM (2006) An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci USA. doi: 10.1073/pnas.0511100103
  51. Lohmiller S, Hantke K, Patzer SI, Braun V (2008) TonB-dependent maltose transport by Caulobacter crescentus. Microbiology. doi: 10.1099/mic.0.2008/017350-0
  52. Loper JE, Gross H (2007) Genomic analysis of antifungal metabolite production by Pseudomonas fluorescens Pf-5. Eur J Plant Pathol. doi: 10.1007/s10658-007-9179-8
  53. Loper JE, Henkels MD (1999) Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl Environ Microbiol 65:5357–5363PubMedGoogle Scholar
  54. Marshall B, Stintzi A, Gilmour C, Meyer JM, Poole K (2009) Citrate-mediated iron uptake in Pseudomonas aeruginosa: involvement of the citrate-inducible FecA receptor and the FeoB ferrous iron transporter. Microbiology. doi: 10.1099/mic.0.023531-0
  55. Marugg JD, van Spanje M, Hoekstra WP, Schippers B, Weisbeek PJ (1985) Isolation and analysis of genes involved in siderophore biosynthesis in plant-growth-stimulating Pseudomonas putida WCS358. J Bacteriol 164:563–570PubMedGoogle Scholar
  56. Matthijs S, Laus G, Meyer JM, Abbaspour-Tehrani K, Schäfer M, Budzikiewicz H, Cornelis P (2009) Siderophore-mediated iron acquisition in the entomopathogenic bacterium Pseudomonas entomophila L48 and its close relative Pseudomonas putida KT2440. Biometals. doi: 10.1007/s10534-009-9247-y
  57. McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405PubMedCrossRefGoogle Scholar
  58. Meyer JM (2000) Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch Microbiol. doi: 10.1007/s002030000188
  59. Meyer JM (2007) Siderotyping and bacterial taxonomy: a siderophore bank for a rapid identification at the species level of fluorescent and non-fluorescent Pseudomonas. In: Varma A, Chincholkar SB (eds) Soil biology: microbial siderophores, vol 12. Springer, pp 43–65Google Scholar
  60. Meyer JM, Geoffroy VA (2004) Environmental fluorescent pseudomonads and pyoverdine diversity: how siderophores could help microbiologists in bacterial identification and taxonomy. In: Crosa JH, Mey AR, Payne SM (eds) Iron transport in bacteria. ASM Press, pp 451–468Google Scholar
  61. Meyer JM, Stintzi A, De Vos D, Cornelis P, Tappe R, Taraz K, Budzikiewicz H (1997) Use of siderophores to type pseudomonads: the three Pseudomonas aeruginosa pyoverdine systems. Microbiology 143:35–43PubMedCrossRefGoogle Scholar
  62. Meyer JM, Geoffroy VA, Baida N, Gardan L, Izard D, Lemanceau P, Achouak W, Palleroni NJ (2002) Siderophore typing, a powerful tool for the identification of fluorescent and nonfluorescent pseudomonads. Appl Environ Microbiol. doi: 10.1128/AEM.68.6.2745-2753.2002
  63. Meyer JM, Gruffaz C, Tulkki T, Izard D (2007) Taxonomic heterogeneity, as shown by siderotyping, of strains primarily identified as Pseudomonas putida. Int J Syst Evol Microbiol. doi: 10.1099/ijs.0.65233-0
  64. Meyer JM, Gruffaz C, Raharinosy V, Bezverbnaya I, Schäfer M, Budzikiewicz H (2008) Siderotyping of fluorescent Pseudomonas: molecular mass determination by mass spectrometry as a powerful pyoverdine siderotyping method. Biometals. doi: 10.1007/s10534-007-9115-6
  65. Mirus O, Strauss S, Nicolaisen K, von Haeseler A, Schleiff E (2009) TonB-dependent transporters and their occurrence in cyanobacteria. BMC Biol. doi: 10.1186/1741-7007-7-68
  66. Moon CD, Zhang XX, Matthijs S, Schäfer M, Budzikiewicz H, Rainey PB (2008) Genomic, genetic and structural analysis of pyoverdine-mediated iron acquisition in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25. BMC Microbiol. doi: 10.1186/1471-2180-8-7
  67. Notredame C, Higgins DG, Heringa J (2000) T-coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol. doi: 10.1006/jmbi.2000.4042
  68. Ochsner UA, Johnson Z, Vasil ML (2000) Genetics and regulation of two distinct haem-uptake systems, phu and has, in Pseudomonas aeruginosa. Microbiology 146:185–198PubMedGoogle Scholar
  69. Paulsen IT, Press CM, Ravel J, Kobayashi DY, Myers GSA, Mavrodi DV, DeBoy RT, Seshadri R, Ren Q, Madupu R, Dodson RJ, Durkin AS, Brinkac LM, Daugherty SC, Sullivan SA, Rosovitz MJ, Gwinn ML, Zhou L, Schneider DJ, Cartinhour SW, Nelson WC, Weidman J, Watkins K, Tran K, Khouri H, Pierson EA, Pierson LS III, Thomashow LS, Loper JE (2005) Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol. doi: 10.1038/nbt1110
  70. Pawelek PD, Croteau N, Ng-Thow-Hing C, Khursigara CM, Moiseeva N, Allaire M, Coulton JW (2006) Structure of TonB in complex with FhuA, E. coli outer membrane receptor. Science. doi: 10.1126/science.1128057
  71. Peacock RS, Weljie AM, Howard SP, Price FD, Vogel HJ (2004) The solution structure of the c-terminal domain of TonB and interaction studies with TonB box peptides. J Mol Biol. doi: 10.1016/j.jmb.2004.11.026
  72. Postle K, Kadner RJ (2003) Touch and go: tying TonB to transport. Mol Microbiol. doi: 10.1046/j.1365-2958.2003.03629.x
  73. Raaijmakers JM, Sluis Lvd, Bakker PAHM, Schippers B, Koster M, Weisbeek PJ (1995) Utilization of heterologous siderophores and rhizosphere competence of fluorescent Pseudomonas spp. Can J Microbiol. doi: 10.1139/m95-017
  74. Rausch C, Weber T, Kohlbacher O, Wohlleben W, Huson DH (2005) Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Res. doi: 10.1093/nar/gki885
  75. Reimmann C, Patel HM, Walsh CT, Haas D (2004) PchC thioesterase optimizes nonribosomal biosynthesis of the peptide siderophore pyochelin in Pseudomonas aeruginosa. J. Bacteriol. doi: 10.1128/JB.186.19.6367-6373.2004
  76. Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  77. Sarniguet A, Kraus J, Henkels MD, Muehlchen AM, Loper JE (1995) The sigma factor σs affects antibiotic production and biological control activity of Pseudomonas fluorescens Pf-5. Proc Natl Acad Sci U S A 92:12255–12259PubMedCrossRefGoogle Scholar
  78. Schauer K, Gouget B, Carrière M, Labigne A, de Reuse H (2007) Novel nickel transport mechanism across the bacterial outer membrane energized by the TonB/ExbB/ExbD machinery. Mol Microbiol. doi: 10.1111/j.1365-2958.2006.05578.x
  79. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem. doi: 10.1016/0003-2697(87)90612-9
  80. Shultis DD, Purdy MD, Banchs CN, Wiener MC (2006) Outer membrane active transport: structure of the BtuB:TonB complex. Science. doi: 10.1126/science.1127694
  81. Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Nat Biotechnol. doi: 10.1038/nbt1183-784
  82. Stachelhaus T, Mootz HD, Marahiel MA (1999) The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol. doi: 10.1016/S1074-5521(99)80082-9
  83. Stanier RY, Palleroni NJ, Doudoroff M (1966) The aerobic pseudomonads: a taxonomic study. J Gen Microbiol. doi: 10.1099/00221287-43-2-159
  84. Sultana RSB, Taraz K, Budzikiewicz H, Meyer JM (2001) An isopyoverdin from Pseudomonas putida CFML90-44. Z Naturforsch C 56:303–307PubMedGoogle Scholar
  85. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol. doi: 10.1093/molbev/msm092
  86. Tappe R, Taraz K, Budzikiewicz H, Meyer JM, Lefèvre JF (1993) Structure elucidation of a pyoverdin produced by Pseudomonas aeruginosa ATCC27853. J Prakt Chem. doi: 10.1002/prac.19933350113
  87. Teintze M, Hossain MB, Barnes CL, Leong J, van der Helm D (1981) Structure of ferric pseudobactin, a siderophore from a plant growth promoting Pseudomonas. Biochemistry 20:6446–6457PubMedCrossRefGoogle Scholar
  88. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  89. Wong-Lun-Sang S, Bernardini J-J, Hennard C, Kyslik P, Dell A, Abdallah MA (1996) Bacterial siderophores: structure elucidation, 2D 1H and 13C NMR assignments of pyoverdins produced by Pseudomonas fluorescens CHAO. Tetrahedron Lett. doi: 10.1016/0040-4039(96)00569-2
  90. Wu X, Monchy S, Taghavi S, Zhu W, Ramos J, van der Lelie D (2010) Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiol Rev. doi:  10.1111/j.1574-6976.2010.00249.x
  91. Yang CC, Leong J (1984) Structure of pseudobactin 7SR1, a siderophore from a plant-deleterious Pseudomonas. Biochemistry 23:3534–3540PubMedCrossRefGoogle Scholar
  92. Yoneyama H, Nakae T (1996) Protein C (OprC) of the outer membrane of Pseudomonas aeruginosa is a copper-regulated channel protein. Microbiology. doi: 10.1099/13500872-142-8-2137
  93. Youard ZA, Mislin GL, Majcherczyk PA, Schalk IJ, Reimmann C (2007) Pseudomonas fluorescens CHAO produces enantio-pyochelin, the optical antipode of the Pseudomonas aeruginosa siderophore pyochelin. J Biol Chem. doi: 10.1074/jbc.M707039200
  94. Zhao Q, Poole K (2002) Mutational analysis of the TonB1 energy coupler of Pseudomonas aeruginosa. J Bacteriol. doi: 10.1128/JB.184.6.1503-1513.2002
  95. Zhu M, Valdebenito M, Winkelmann G, Hantke K (2005) Functions of the siderophore esterases IroD and IroE in iron-salmochelin utilization. Microbiology. doi: 10.1099/mic.0.27888-0

Copyright information

© Springer Science+Business Media, LLC (outside the USA)  2010

Authors and Affiliations

  • Sierra L. Hartney
    • 1
  • Sylvie Mazurier
    • 2
  • Teresa A. Kidarsa
    • 4
  • Maria Carolina Quecine
    • 3
  • Philippe Lemanceau
    • 2
  • Joyce E. Loper
    • 4
  1. 1.Department of Botany and Plant PathologyOregon State UniversityCorvallisUSA
  2. 2.INRA, Université de Bourgogne, UMR1229 ‘Microbiologie du Sol et de l’Environement’, CMSEDijon CedexFrance
  3. 3.Department of Genetics, Escola Superior de Agricultura ‘‘Luiz de Queiroz’’University of São PauloPiracicabaBrazil
  4. 4.Horticultural Crops Research LaboratoryUnited States Department of Agriculture, Agricultural Research ServiceCorvallisUSA

Personalised recommendations