Advertisement

BioMetals

, Volume 23, Issue 6, pp 1105–1112 | Cite as

Genome-wide transcriptome analysis of the adaptive response of Enterococcus faecalis to copper exposure

  • Angélica Reyes-Jara
  • Mauricio Latorre
  • Guadalupe López
  • Agathe Bourgogne
  • Barbara E. Murray
  • Verónica Cambiazo
  • Mauricio González
Article

Abstract

In this work we investigated the adaptive response of E. faecalis to Cu and the role of CopY, a Cu-dependent repressor, in the regulation of Cu metabolism. In doing so, we examined the whole-genome transcriptional response of E. faecalis wild-type (WT) and a ΔcopY strain exposed to non-toxic Cu excess. The results indicated that after Cu exposure, most of the genes that displayed a significant change in their expression levels in the WT strain (135 of the 145 up-regulated genes and 115 of the 142 down-regulated genes) were also differentially expressed in the E. faecalis ΔcopY strain. This extensive overlap in the transcriptional response, suggested that additional transcription factors mediate the response of E. faecalis to Cu. As a first step to analyze this possibility, we selected among the up-regulated genes five genes encoding putative transcriptional regulators and determined their expression levels at different times after Cu exposure. The temporal expression of these regulators was different from that of copY, which reached its maximum at the earliest time measured. Nevertheless, transcription elongation factor GreA, and members of Rrf2, Cro/CI and SorC/DeoR transcription factor families were induced shortly after Cu exposure, suggesting that these proteins are able to complement the role of CopY in the regulatory network activated by Cu. To our knowledge, this is the first report on the global transcriptional response to Cu in a member of this taxonomic group.

Keywords

E. faecalis Copper homeostasis Global gene expression Real-time RT-PCR CopY 

Notes

Acknowledgements

This work was supported by grants Basal-CMM, Fondecyt 1071083 and 1090211 and Fondef D04I1257. AR-J was recipients of an ‘A. Steckel’ fellowship from INTA and MAL is a recipient of doctoral fellowship from Conicyt. The authors thank Arely González and Andres Aravena for COGs assignments and manual revision of V583 genome.

Supplementary material

10534_2010_9356_MOESM1_ESM.pdf (154 kb)
Supplementary material 1 (PDF 154 kb)
10534_2010_9356_MOESM2_ESM.xls (104 kb)
Supplementary material 2 (XLS 103 kb)

References

  1. Arredondo M, Núñez MT (2005) Iron and copper metabolism. Mol Aspects Med 26:313–327CrossRefPubMedGoogle Scholar
  2. Bissig KD, Wunderli-Ye H, Duda PW, Solioz M (2001) Structure-function analysis of purified Enterococcus hirae CopB copper ATPase: effect of Menkes/Wilson disease mutation homologues. Biochem J 357:217–223CrossRefPubMedGoogle Scholar
  3. Chen Y, Staddon JH, Dunny GM (2007) Specificity determinants of conjugative DNA processing in the Enterococcus faecalis plasmid pCF10 and the Lactococcus lactis plasmid pRS01. Mol Microbiol 63:1549–1564CrossRefPubMedGoogle Scholar
  4. de Freitas J, Wintz H, Kim JH, Poynton H, Fox T, Vulpe C (2003) Yeast, a model organism for iron and copper metabolism studies. Biometals 16:185–197CrossRefPubMedGoogle Scholar
  5. del Pozo T, Cambiazo V, González M (2010) Gene expression profiling analysis of copper homeostasis in Arabidopsis thaliana. Biochem Biophys Res Commun. doi: 10.1016/j.bbrc.2010.01.111
  6. Frangipani E, Slaveykova VI, Reimmann C, Haas D (2008) Adaptation of aerobically growing Pseudomonas aeruginosa to copper starvation. J Bacteriol 190:6706–6717CrossRefPubMedGoogle Scholar
  7. Gonzalez M, Tapia L, Alvarado M, Tornero JD, Fernández R (1999) Intracellular determination of elements in mammalian cultured cells by total reflection X-ray fluorescence spectrometry. J Anal At Spectrom 14:885–888CrossRefGoogle Scholar
  8. Keller G, Bird A, Winge DR (2005) Independent metalloregulation of Ace1 and Mac1 in Saccharomyces cerevisiae. Eukaryot Cell 4:1863–1871CrossRefPubMedGoogle Scholar
  9. Kershaw CJ, Brown NL, Constantinidou C, Patel MD, Hobman JL (2005) The expression profile of Escherichia coli K-12 in response to minimal, optimal and excess copper concentrations. Microbiology 151:1187–1198CrossRefPubMedGoogle Scholar
  10. Kristich CJ, Chandler JR, Dunny GM (2007) Development of a host-genotype-independent counter selectable marker and a high-frequency conjugative delivery system and their use in genetic analysis of Enterococcus faecalis. Plasmid 57:131–144CrossRefPubMedGoogle Scholar
  11. Leenhouts K, Buist G, Bolhuis A, ten Berge A, Kiel J, Mierau I, Dabrowska M, Venema G, Kok J (1996) A general system for generating unlabelled gene replacements in bacterial chromosomes. Mol Gen Genet 253:217–224CrossRefPubMedGoogle Scholar
  12. Linder MC, Hazegh-Azam M (1996) Copper biochemistry and molecular biology. Am J Clin Nutr 63:797S–811SPubMedGoogle Scholar
  13. Lu ZH, Dameron CT, Solioz M (2003) The Enterococcus hirae paradigm of copper homeostasis: copper chaperone turnover, interactions, and transactions. Biometals 16:137–143CrossRefPubMedGoogle Scholar
  14. Macomber L, Imlay JA (2009) The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci USA 106:8344–8349CrossRefPubMedGoogle Scholar
  15. O’Halloran TV (1993) Transition metals in control of gene expression. Science 261:715–725CrossRefPubMedGoogle Scholar
  16. Odermatt A, Solioz M (1995) Two trans-acting metalloregulatory proteins controlling expression of the copper-ATPases of Enterococcus hirae. J Biol Chem 270:4349–4354CrossRefPubMedGoogle Scholar
  17. Pecou E, Maass A, Remenik D, Briche J, Gonzalez M (2006) A mathematical model for copper homeostasis in Enterococcus hirae. Math Biosci 20:222–239CrossRefGoogle Scholar
  18. Portmann R, Poulsen KR, Wimmer R, Solioz M (2006) CopY-like copper inducible repressors are putative ‘winged helix’ proteins. Biometals 19:61–70CrossRefPubMedGoogle Scholar
  19. Rae TD, Schmidt PJ, Pufahl RA, Culotta VC, O’Halloran TV (1999) Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 28:805–808CrossRefGoogle Scholar
  20. Reyes A, Leiva A, Cambiazo V, Mendez MA, Gonzalez M (2006) Cop-like operon: structure and organization in species of the Lactobacillales order. Biol Res 39:87–93CrossRefPubMedGoogle Scholar
  21. Ruiz-Garbajosa P, Bonten MJ, Robinson DA, Top J, Nallapareddy SR, Torres C, Coque TM, Cantón R, Baquero F, Murray BE, del Campo R, Willems RJ (2006) Multilocus sequence typing scheme for Enterococcus faecalis reveals hospital-adapted genetic complexes in a background of high rates of recombination. J Clin Microbiol 44:2220–2228CrossRefPubMedGoogle Scholar
  22. Rutherford JC, Bird AJ (2004) Metal-responsive transcription factors that regulate iron, zinc, and copper homeostasis in eukaryotic cells. Eukaryot Cell 3:1–13CrossRefPubMedGoogle Scholar
  23. Solioz M, Stoyanov JV (2003) Copper homeostasis in Enterococcus hirae. FEMS Microbiol Rev 27:183–195CrossRefPubMedGoogle Scholar
  24. Teitzel GM, Geddie A, De Long SK, Kirisits MJ, Whiteley M, Parsek MR (2006) Survival and growth in the presence of elevated copper: transcriptional profiling of copper-stressed Pseudomonas aeruginosa. J Bacteriol 188:7242–7256CrossRefPubMedGoogle Scholar
  25. Urbanski NK, Beresewicz A (2000) Generation of *OH initiated by interaction of Fe2+ and Cu+ with dioxygen; comparison with the Fenton chemistry. Acta Biochim Pol 47:951–962PubMedGoogle Scholar
  26. Ward SK, Hoye EA, Talaat AM (2008) The global responses of Mycobacterium tuberculosis to physiological levels of copper. J Bacteriol 190:2939–2946CrossRefPubMedGoogle Scholar
  27. Yamamoto K, Ishiham A (2005) Transcriptional response of Escherichia coli to external copper. Mol Microbiol 56:215–227CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Angélica Reyes-Jara
    • 1
  • Mauricio Latorre
    • 1
  • Guadalupe López
    • 1
  • Agathe Bourgogne
    • 2
  • Barbara E. Murray
    • 2
  • Verónica Cambiazo
    • 1
    • 3
  • Mauricio González
    • 1
    • 4
  1. 1.Laboratorio de Bioinformática y Expresión Génica, INTAUniversidad de ChileSantiagoChile
  2. 2.Division of Infectious Diseases, Department of MedicineUniversity of Texas Medical SchoolHoustonUSA
  3. 3.Millennium Nucleus Center for Genomics of the Cell (CGC)SantiagoChile
  4. 4.Laboratorio de Bioinformática y Matemáticas del Genoma, Centro de Modelamiento Matemático (UMI 2807, CNRS), Facultad de Ciencias Físicas y MatemáticasUniversidad de ChileSantiagoChile

Personalised recommendations