, Volume 23, Issue 6, pp 973–984 | Cite as

Cadmium induced mitochondrial redox changes in germinating pea seed

  • Moêz Smiri
  • Abdelilah Chaoui
  • Nicolas Rouhier
  • Chibani Kamel
  • Eric Gelhaye
  • Jean-Pierre Jacquot
  • Ezzedine El Ferjani


Mitochondria play an essential role in producing the energy required for seedling growth following imbibition. Heavy metals, such as cadmium impair mitochondrial functioning in part by altering redox regulation. The activities of two protein redox systems present in mitochondria, thioredoxin (Trx) and glutaredoxin (Grx), were analysed in the cotyledons and embryo of pea (Pisum sativum L.) germinating seeds exposed to toxic Cd concentration. Compared to controls, Cd-treated germinating seeds showed a decrease in total soluble protein content, but an increase in –SH content. Under Cd stress conditions, Grx and glutathione reductase (GR) activities as well as glutathione (GSH) concentrations decreased both in cotyledons and the embryo. Similar results were obtained with the Trx system: Trx and NADPH-dependent thioredoxin reductase (NTR) activities were not stimulated, whereas total NAD(P) contents diminished in the embryo. However, Cd enhanced the levels of all components of the Trx system in the cotyledons. On the other hand, Cd caused a significant increase in oxidative stress parameters such as the redox ratio of coenzymes (oxidized to reduced forms) and NAD(P)H oxidase activities. These results indicate that Cd induces differential redox responses on different seed tissues. We suggest that neither Grx system nor Trx one may improve the redox status of mitochondrial thiols in the embryo of germinating pea seeds exposed to Cd toxicity, but in the cotyledons the contribution of Trx/NTR/NADPH can be established in despite the vulnerability of the coenzyme pools due to enzymatic oxidation.


Cadmium Germination Mitochondria Pea Redox 



5,5′-Dithio-bis-(2-nitrobenzoic acid)


Dry weight


Fresh weight


Glutathione reductase






NADPH-dependent thioredoxin reductase





Financial support for this work was received from the Tunisian Ministry of Higher Education, Scientific Research and Technology (99/UR/09-18) and INRA-Henri Poincaré University, French (Grant to Moêz Smiri).


  1. Aina R, Labra M, Fumagalli P, Vannini C, Marsoni M, Cucchi U, Bracale M, Sgorbati S, Citterio S (2007) Thiol-peptide level and proteomic changes in response to cadmium toxicity in Oryza sativa L. roots. Environ Exp Bot 59:381–392CrossRefGoogle Scholar
  2. Alkhalfioui F, Renard M, Vensel WH, Wong J, Tanaka CK, Hurkman WJ, Buchanan BB, Montrichard F (2007) Thioredoxin-linked proteins are reduced during germination of Medicago truncatula seeds. Plant Physiol 144:1559–1579CrossRefPubMedGoogle Scholar
  3. Anderson ME (1985) Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol 113:548–555CrossRefPubMedGoogle Scholar
  4. Balmer Y, Vensel WH, Tanaka CK, Hurkman WJ, Gelhaye E, Rouhier N, Jacquot JP, Manieri W, Schurmann P, Drouxet A (2004) Thioredoxin links redox to the regulation of fundamental processes of plant mitochondria. Proc Natl Acad Sci USA 101:2642–2647CrossRefPubMedGoogle Scholar
  5. Balmer Y, Vensel WH, Cai N, Manieri W, Schürmann P, Hurkman WJ, Buchanan BB (2006) A complete ferredoxin/thioredoxin system regulates fundamental processes in amyloplasts. Proc Natl Acad Sci USA 103:2988–2993CrossRefPubMedGoogle Scholar
  6. Bewley DJ (1997) Seed germination and dormany. Plant Cell 9:1055–1066CrossRefPubMedGoogle Scholar
  7. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantity of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  8. Bragadin M, Scutari G, Folda A, Bindoli A, Rigobello MP (2004) Effect of metal complexes on thioredoxin reductase and the regulation of mitochondrial permeability conditions. Ann N Y Acad Sci 1030:348–354CrossRefPubMedGoogle Scholar
  9. Chaoui A, El Ferjani E (2005) Effects of cadmium and copper on antioxidant capacities, lignification and auxin degradation in leaves of pea (Pisum sativum L.) seedling. Comptes Rendus Biol 328:23–31CrossRefGoogle Scholar
  10. Chaoui A, Mazhoudi S, Ghorbal MH, El Ferjani E (1997) Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci 127:139–147CrossRefGoogle Scholar
  11. Chaoui A, Jarrar B, El Ferjani E (2004) Effects of cadmium and copper on peroxidase, NADH oxidase and IAA oxidase activities in cell wall, soluble and microsomal membrane fractions of pea roots. J Plant Physiol 161:1225–1234CrossRefPubMedGoogle Scholar
  12. Chen Y, Cai J, Jones DP (2006) Mitochondrial thioredoxin in regulation of oxidant-induced cell death. FEBS Lett 580:6596–6602CrossRefPubMedGoogle Scholar
  13. Chibani K, Wingsle G, Jacquot JP, Gelhaye E, Rouhier N (2009) Comparative genomic study of the thioredoxin family in photosynthetic organisms with emphasis on Populus trichocarpa. Mol Plant 2:308–322CrossRefPubMedGoogle Scholar
  14. Chugh LK, Sawhney SK (1996) Effect of cadmium on germination, amylases and rate of respiration of germinating pea seeds. Environ Poll 92:1–5CrossRefGoogle Scholar
  15. Cobbett CS, Goldsborough PB (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182CrossRefPubMedGoogle Scholar
  16. Diotte NM, Xiong Y, Gao J, Chua BHL, Ho YS (2009) Attenuation of doxorubicin-induced cardiac injury by mitochondrial glutaredoxin 2. Biochim Biophys Acta 1793:427–438CrossRefPubMedGoogle Scholar
  17. Discola KF, De Oliveira MA, Cussiol JRR, Monteiro G, Bárcena JA, Porras P, Padilla CA, Guimarães BG, Netto LES (2009) Structural aspects of the distinct biochemical properties of glutaredoxin 1 and glutaredoxin 2 from Saccharomyces cerevisiae. J Mol Biol 385:889–901CrossRefPubMedGoogle Scholar
  18. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77CrossRefPubMedGoogle Scholar
  19. Foyer CH, Halliwell B (1976) The presence of gluthathione and gluthathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25CrossRefGoogle Scholar
  20. Gelhaye E, Rouhier N, Jacquot JP (2003) Evidence for a subgroup of thioredoxin h that requires GSH/Grx for its reduction. FEBS Lett 555:443–448CrossRefPubMedGoogle Scholar
  21. Gelhaye E, Rouhier N, Gérard J, Jolivet Y, Gualberto J, Navrot N, Ohlsson PI, Wingsle G, Hirasawa M, Knaff DB, Wang H, Dizengremel P, Meyer Y, Jacquot JP (2004) A specific form of thioredoxin h occurs in plant mitochondria and regulates the alternative oxidase. Proc Natl Acad Sci USA 101:14545–14550CrossRefPubMedGoogle Scholar
  22. Gelhaye E, Rouhier N, Navrot N, Jacquot JP (2005) The plant thioredoxin system. Cell Mol Life Sci 62:24–35CrossRefPubMedGoogle Scholar
  23. Gratäo PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metals-stressed plant a little easier. Funct Plant Biol 32:481–494CrossRefGoogle Scholar
  24. Ishida A, Ookubo K, Ono K (1987) Formation of hydrogen peroxide by NAD(P)H oxidation with isolated cell wall-associated peroxidase from cultured liverwort cells, Marchantia polymorpha L. Plant Cell Physiol 28:723–726Google Scholar
  25. Jacquot JP, Rivera-Madrid R, Marinho P, Kollarova M, Le Maréchal P, Miginiac-Maslow M, Meyer Y (1994) Arabidopsis thaliana NADPH thioredoxin reductase. J Mol Biol 235:1357–1363CrossRefPubMedGoogle Scholar
  26. Jacquot JP, Eklund H, Rouhier N, Schürmann P (2009) Structural and evolutionary aspects of thioredoxin reductases in photosynthetic organisms. Trends Plant Sci 14:336–343CrossRefPubMedGoogle Scholar
  27. Kasimova MR, Grigiene J, Krab K, Hagedorn PH, Flyvbjerg H, Andersen PE, Møller IM (2006) The free NADH concentration is kept constant in plant mitochondria under different metabolic conditions. Plant Cell 18:688–698CrossRefPubMedGoogle Scholar
  28. Laloi C, Rayapuram N, Chartier Y, Grienenberger JM, Bonnard G, Meyer Y (2001) Identification and characterization of a mitochondrial thioredoxin system in plants. Proc Natl Acad Sci USA 98:14144–14149CrossRefPubMedGoogle Scholar
  29. Lemaire S, Keryer E, Stein M, Schepens I, Issakidis-bourguet E, Gerard-hirne C, Miginiac-Maslow M, Jacquot JP (1999) Heavy-metal regulation of thioredoxin gene expression in Chlamydomonas reinhardtii. Plant Physiol 120:773–778CrossRefPubMedGoogle Scholar
  30. Lozano RM, Wong JH, Yee BC, Peters A, Kobrehel K, Buchanan BB (1996) New evidence for a role for thioredoxin h in germination and seedling development. Planta 200:100–106CrossRefGoogle Scholar
  31. Matsumura H, Miyachi S (1980) Cycling assay for nicotinamide adenine dinucleotides. Methods Enzymol 69:465–470CrossRefGoogle Scholar
  32. Mattioni C, Gabbrielli R, Vangronsveld J, Clijsters H (1997) Nickel and cadmium toxicity and enzymatic activity in Ni-tolerant and non-tolerant populations of Silene italica Pers. J Plant Physiol 150:173–177Google Scholar
  33. Mihoub A, Chaoui A, El Ferjani E (2005) Biochemical changes associated with cadmium and copper stress in germinating pea seeds (Pisum sativum L.). Comptes Rendus Biol 328:33–41CrossRefGoogle Scholar
  34. Millar AH, Heazlewood JL, Kristensen BK, Braun HP, Møller IM (2005) The plant mitochondrial proteome. Trends Plant Sci 10:36–43CrossRefPubMedGoogle Scholar
  35. Montrichard F, Renard M, Alkhalfioui F, Duval FD, Macherel D (2003) Identification and differential expression of two thioredoxin h isoforms in germinating seeds from pea. Plant Physiol 132:1707–1715CrossRefPubMedGoogle Scholar
  36. Murray DR, Peoples MB, Waters SP (1979) Proteolysis in the axis of the germinating pea seed, I. Changes in protein degrading enzyme activities of the radicle and primary root. Planta 147:111–116CrossRefGoogle Scholar
  37. Muto S, Miyachi S, Usuda H, Edwards GE, Bassham JA (1981) Light-induced conversion of nicotinamide adenine dinucleotide to nicotinamide adenine dinucleotide phosphate in higher plant leaves. Plant Physiol 68:324–328CrossRefPubMedGoogle Scholar
  38. Pagano EA, Chueca A, López-Gorgé J (2000) Expression of thioredoxins f and m, and of their targets fructose-1, 6-bisphosphatase and NADP-malate dehydrogenase, in pea plants grown under normal and light/temperature stress conditions. J Exp Bot 51:1299–1307CrossRefPubMedGoogle Scholar
  39. Pasternak M, Lim B, Wirtz M, Hell R, Cobbett CS, Meyer AJ (2008) Restricting glutathione biosynthesis to the cytosol is sufficient for normal plant development. Plant J 53:999–1012CrossRefPubMedGoogle Scholar
  40. Rahoui S, Chaoui A, El Ferjani E (2008) Differential sensitivity to cadmium in germinating seeds of three cultivars of faba bean (Vicia faba L.). Acta Physiol Plant 30:451–456CrossRefGoogle Scholar
  41. Reichheld JP, Mestres-Ortega D, Laloi C, Meyer Y (2002) The multigenic family of thioredoxin h in Arabidopsis thaliana, specific expression and stress response. Plant Physiol Biochem 40:685–690CrossRefGoogle Scholar
  42. Reichheld J-P, Meyer E, Khafif M, Bonnard G, Meyer Y (2005) AtNTRB is the major mitochondrial thioredoxin reductase in Arabidopsis thaliana. FEBS Lett 579:337–342CrossRefPubMedGoogle Scholar
  43. Rouhier N, Gelhaye E, Jacquot JP (2002) Exploring the active site of plant glutaredoxin by site-directed mutagenesis. FEBS Lett 511:145–149CrossRefPubMedGoogle Scholar
  44. Rouhier N, Gelhaye E, Jacquot JP (2004) Plant glutaredoxins: still mysterious reducing systems. Cell Mol Life Sci 61:1266–1277CrossRefPubMedGoogle Scholar
  45. Rouhier N, Lemaire SD, Jacquot JP (2008) The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation. Ann Rev Plant Biol 59:143–166CrossRefGoogle Scholar
  46. Schwarzländer M, Fricker MD, Sweetlove LJ (2009) Monitoring the in vivo redox state of plant mitochondria: effect of respiratory inhibitors, abiotic stress and assessment of recovery from oxidative challenge. Bioch Biophys Acta 1787:468–475CrossRefGoogle Scholar
  47. Smiri M, Chaoui A, El Ferjani E (2009) Respiratory metabolism in the embryonic axis of germinating pea seed exposed to cadmium. J Plant Physiol 166:259–269CrossRefPubMedGoogle Scholar
  48. Stochs SJ, Bagchi D (1995) Oxidative mechanism in the toxicity of metal ions. Free Radic Biol Med 18:321–336CrossRefGoogle Scholar
  49. Traverso JA, Vignols F, Cazalis R, Pulido A, Sahrawy M, Cejudo FJ, Meyer Y, Chueca A (2007) PsTRXh1 and PsTRXh2 are both pea h-type thioredoxins with antagonistic behavior in redox imbalances. Plant Physiol 143:300–311CrossRefPubMedGoogle Scholar
  50. Traverso JA, Vignols F, Cazalis R, Serrato AJ, Pulido P, Sahrawy M, Meyer Y, Cejudo FJ, Chueca A (2008) Immunocytochemical localization of Pisum sativum TRXs f and m in non-photosynthetic tissues. J Exp Bot 59:1267–1277CrossRefPubMedGoogle Scholar
  51. Weber M, Trampczynska A, Clemens S (2006) Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd2+-hypertolerant facultative metallophyte Arabidopsis halleri. Plant Cell Environ 29:950–963CrossRefPubMedGoogle Scholar
  52. Welbaum GE, Bradford KJ, Kyu-Ock Y, Oluoch MO (1998) Biophysical, physiological and biochemical processes regulating seed germination. Seed Sci Res 8:161–172CrossRefGoogle Scholar
  53. Xu Y, Feng L, Jeffrey PD, Shi Y, Morel FMM (2008) Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 452:56–62CrossRefPubMedGoogle Scholar
  54. Yano H, Wong JH, Cho MJ, Buchanan BB (2001) Redox changes accompanying the degradation of seed storage proteins in germinating rice. Plant Cell Physiol 42:879–883CrossRefPubMedGoogle Scholar
  55. Zhao Z, Hu X, Ross CW (1987) Comparison of tissue preparation methods for assay of nicotinamide coenzymes. Plant Physiol 84:987–988CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Moêz Smiri
    • 1
    • 2
  • Abdelilah Chaoui
    • 1
  • Nicolas Rouhier
    • 2
  • Chibani Kamel
    • 2
  • Eric Gelhaye
    • 2
  • Jean-Pierre Jacquot
    • 2
  • Ezzedine El Ferjani
    • 1
  1. 1.Bio-Physiologie CellulairesFaculté des Sciences de BizerteZarzounaTunisie
  2. 2.Unité Mixte de Recherches1136 Interaction Arbres-Microorganismes INRA-Université Henri-Poincaré, IFR110, Faculté des SciencesVandoeuvre CedexFrance

Personalised recommendations