, Volume 23, Issue 2, pp 207–219 | Cite as

Arsenic accumulation and thiol status in lichens exposed to As(V) in controlled conditions

  • Tanja Mrak
  • Zvonka Jeran
  • Franc Batič
  • Luigi Sanità di Toppi


Thalli of epiphytic lichen Hypogymnia physodes (L.) Nyl. and terricolous Cladonia furcata (Huds.) Schrad., collected from an area with background arsenic concentrations, were exposed to 0, 0.1, 1 and 10 μg mL−1 arsenate (As(V)) solutions for 24 h. After exposure they were kept in the metabolically active state for 0, 24 and 48 h in a growth chamber. In the freeze dried samples glutathione (GSH), glutathione disulphide (GSSG), cysteine (Cys) and cystine were analysed and induction of phytochelatin (PC) synthesis measured by reversed-phase high-performance liquid chromatography in combination with fluorescence detection or UV spectrometry. Total arsenic content in thalli was measured by instrumental neutron activation analysis (INAA). In H. physodes, which contained higher amounts of arsenic compared to C. furcata, total glutathione content significantly decreased in samples exposed to 10 μg mL−1 As(V), whereas in C. furcata a significant increase was observed. In both species PC synthesis was induced in thalli exposed to 10 μg mL−1.


Lichens Arsenic Glutathione Phytochelatins Half-cell reduction potential Hypogymnia physodes Cladonia furcata 









Glutathione disulphide


Total glutathione




Total cyst(e)ine


Phytochelatin (n = number of γ-Glu-Cys units)


Half-cell reduction potential for GSSG/2GSH couple



This research was financed by the Slovenian Research Agency through programmes P1-0143 and PR-00238. The authors wish to thank Emanuela Vurro from the Department of Evolutionary and Functional Biology, University of Parma, Italy, for technical assistance. Astrid Wonisch and Klaus Remele from the Institute of Plant Sciences, University of Graz, Austria, are gratefully acknowledged for instructions on determination of thiols and their corresponding disulphides and much technical help.


  1. Ahmadjian V (1993) The lichen symbiosis. Wiley, New YorkGoogle Scholar
  2. Bačkor M, Pawlik-Skowrońska B, Tomko J, Buďová J, Sanità di Toppi L (2006) Response to copper stress in aposymbiotically grown lichen mycobiont Cladonia cristatella: uptake, viability, ergosterol and production of non-protein thiols. Mycol Res 110:994–999CrossRefPubMedGoogle Scholar
  3. Bentley R, Chasteen TG (2002) Microbial methylation of metalloids: arsenic, antimony and bismuth. Microbiol Mol Biol Rev 66:250–271CrossRefPubMedGoogle Scholar
  4. Brown DH, Beckett RP (1985) The role of cell wall in the intracellular uptake of cations by lichens. In: Brown DH (ed) Lichen physiology and cell biology. Plenum Press, New York, pp 247–258Google Scholar
  5. Cánovas D, Vooijs R, Schat H, de Lorenzo V (2004) The role of thiol species in the hypertolerance of Aspergillus sp. P37 to arsenic. J Biol Chem 279:51234–51240CrossRefPubMedGoogle Scholar
  6. EHC 224—Environmental Health Criteria 224 (2001) Arsenic and arsenic compounds, 2nd edn. WHO, Geneva. Cited 9 Oct 2008
  7. Grill E, Winnacker E-L, Zenk MH (1985) Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230:674–676CrossRefPubMedGoogle Scholar
  8. Grill E, Winnacker E-L, Zenk MH (1987) Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proc Natl Acad Sci USA 84:439–443CrossRefPubMedGoogle Scholar
  9. Grill E, Löffler S, Winnacker E-L, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipepttidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci USA 86:6838–6842CrossRefPubMedGoogle Scholar
  10. Hasegawa H, Sohrin Y, Seki K, Sato M, Norisuye K, Naito K, Matsui M (2001) Biosynthesis and release of methylarsenic compounds during the growth of freshwater algae. Chemosphere 43:265–272CrossRefPubMedGoogle Scholar
  11. Jeran Z, Jaćimović R, Batič F, Mavsar R (2002) Lichens as integrating air pollution monitors. Environ Pollut 120:107–113CrossRefPubMedGoogle Scholar
  12. Kranner I (1998) Determination of glutathione, glutathione disulphide and two related enzymes, glutathione reductase and glucose-6-phosphate dehydrogenase, in fungal and plant cells. In: Varna A (ed) Mycorrhiza manual. Springer, Berlin, pp 227–241Google Scholar
  13. Kranner I (2002) Glutathione status correlates with different degrees of desiccation tolerance in three lichens. New Phytol 154:451–460CrossRefGoogle Scholar
  14. Kranner I, Grill D (1996) Determination of glutathione and glutathione disulphide in lichens: a comparison of frequently used methods. Phytochem Anal 7:24–28CrossRefGoogle Scholar
  15. Kranner I, Zorn M, Turk B, Wornik S, Batič F (2003) Biochemical traits of lichens differing in relative desiccation tolerance. New Phytol 160:167–176CrossRefGoogle Scholar
  16. Kranner I, Cram WJ, Zorn M, Wornik S, Yoshimura I, Stabentheiner E, Pfeifhofer HW (2005) Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proc Natl Acad Sci USA 102:3141–3146CrossRefPubMedGoogle Scholar
  17. Kranner I, Birtić S, Anderson KM, Pritchard HW (2006) Glutathione half-cell reduction potential: a universal stress marker and modulator of programmed cell death? Free Radic Biol Med 40:2155–2165CrossRefPubMedGoogle Scholar
  18. Kranner I, Beckett R, Hochman A, Nash TH III (2008) Desiccation-tolerance in lichens: a review. Bryologist 111:576–593CrossRefGoogle Scholar
  19. Le Faucheur S, Schildknecht F, Behra R, Sigg L (2006) Thiols in Scenedesmus vacuolatus upon exposure to metals and metalloids. Aquat Toxicol 80:355–361CrossRefPubMedGoogle Scholar
  20. Levy JL, Stauber JL, Adams MS, Maher WA, Kirby JK, Jolley DF (2005) Toxicity, biotransformation, and mode of action of arsenic in two freshwater microalgae (Chlorella sp. and Monoraphidium arcuatum). Environ Toxicol Chem 24:2630–2639CrossRefPubMedGoogle Scholar
  21. Maitani T, Kubota H, Sato K, Yamada T (1996) The composition of metals bound to class III metallothionein (phytochelatin and its desglycyl peptide) induced by various metals in root cultures of Rubia tinctorum. Plant Physiol 110:1145–1150PubMedGoogle Scholar
  22. Mascher R, Lippmann B, Holzinger S, Bergmann H (2002) Arsenate toxicity: effects on oxidative stress response molecules and enzymes in red clover plants. Plant Sci 163:961–969CrossRefGoogle Scholar
  23. McLean J, Purvis OW, Williamson BJ, Bailey EH (1998) Role for lichen melanins in uranium remediation. Nature 391:649–650CrossRefGoogle Scholar
  24. Meharg AA, Macnair MR (1990) An altered phosphate uptake system in arsenate-tolerant Holcus lanatus L. New Phytol 116:29–35CrossRefGoogle Scholar
  25. Meharg AA, Macnair MR (1991) Uptake, accumulation and translocation of arsenate in arsenate-tolerant and non-tolerant Holcus lanatus L. New Phytol 117:225–231CrossRefGoogle Scholar
  26. Morelli E, Mascherpa MC, Scarano G (2005) Biosynthesis of phytochelatins and arsenic accumulation in the marine microalga Phaeodactylum tricornutum in response to arsenate exposure. Biometals 18:587–593CrossRefPubMedGoogle Scholar
  27. Mrak T, Šlejkovec Z, Jeran Z, Jaćimović R, Kastelec D (2008) Uptake and biotransformation of arsenate in the lichen Hypogymnia physodes (L.) Nyl. Environ Pollut 151:300–307CrossRefPubMedGoogle Scholar
  28. Nash TH III (1996) Nutrients, elemental accumulation and mineral cycling. In: Nash TH III (ed) Lichen biology. Cambridge University Press, Cambridge, pp 136–153Google Scholar
  29. Pawlik-Skowrońska B, Sanità di Toppi L, Favali MA, Fossati F, Pirszel J, Skowroński T (2002) Lichens respond to heavy metaly by phytochelatin synthesis. New Phytol 156:95–102CrossRefGoogle Scholar
  30. Pawlik-Skowrońska B, Pirszel J, Kalinowska R, Skowroński T (2004) Arsenic availability, toxicity and direct role of GSH and phytochelatins in As detoxification in the green alga Stichococcus bacillaris. Aquat Toxicol 70:201–212CrossRefPubMedGoogle Scholar
  31. Pawlik-Skowrońska B, Purvis OW, Pirszel J, Skowroński T (2006) Cellular mechanisms of Cu-tolerance in the epilithic lichen Lecanora polytropa growing at a copper mine. Lichenologist 38:267–275CrossRefGoogle Scholar
  32. Purvis OW, Halls C (1996) A review of lichens in metal-enriched environments. Lichenologist 28:571–601Google Scholar
  33. Purvis OW, Elix JA, Broomhead JA, Jones GC (1987) The occurence of copper-norstictic acid in lichens from cupriferous substrata. Lichenologist 19:193–203CrossRefGoogle Scholar
  34. Raab A, Feldmann J, Meharg AA (2004) The nature of arsenic-phytochelatin complexes in Holcus lanatus and Pteris cretica. Plant Physiol 134:1113–1122CrossRefPubMedGoogle Scholar
  35. Raab A, Schat H, Meharg AA, Feldmann J (2005) Uptake, translocation and transformation of arsenate and arsenite in sunflower (Helianthus annuus): formation of arsenic-phytochelatin complexes during exposure to high arsenic concentrations. New Phytol 168:551–558CrossRefPubMedGoogle Scholar
  36. Raab A, Ferreira K, Meharg AA, Feldmann J (2007) Can arsenic–phytochelatin complex formation be used as an indicator for toxicity in Helianthus annuus? J Exp Bot 58:1333–1338CrossRefPubMedGoogle Scholar
  37. Requejo R, Tena M (2005) Proteome analysis of maize roots reveals that oxidative stress is a main contributing factor to plant arsenic toxicity. Phytochemistry 66:1519–1528CrossRefPubMedGoogle Scholar
  38. Ric de Vos CH, Vonk MJ, Vooijs R, Schat H (1992) Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiol 98:853–858CrossRefGoogle Scholar
  39. Richardson DHS, Nieboer E, Lavoie P, Padovan D (1984) Anion accumulation by lichens I. The characteristics and kinetics of arsenate uptake by Umbilicaria muhlenbergii. New Phytol 96:71–82CrossRefGoogle Scholar
  40. Rosen BP (2002) Biochemistry of arsenic detoxification. FEBS Lett 529:86–92CrossRefPubMedGoogle Scholar
  41. Sanità di Toppi L, Marabottini R, Vattuone Z, Musetti R, Favali MA, Sorgonà A, Badiani M (2005) Cell wall immobilisation and antioxidant status of Xanthoria parietina thalli exposed to cadmium. Functl Plant Biol 32:611–618Google Scholar
  42. Sanità di Toppi L, Pawlik-Skowrońska B, Vurro E, Vattuone Z, Kalinowska R, Restivo FM, Musetti R, Skowroński T (2008) First and second line mechanisms of cadmium detoxification in the lichen photobiont Trebouxia impressa (Chlorophyta). Environ Pollut 151:280–286CrossRefPubMedGoogle Scholar
  43. Sarret G, Manceau A, Cuny D, Van Haluwyn C, Deruelle S, Hazemann J-L, Soldo Y, Eybert-Berard L, Menthonnex J-J (1998) Mechanisms of lichen resistance to metallic pollution. Environ Sci Technol 32:3325–3330CrossRefGoogle Scholar
  44. Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulphide/glutathione couple. Free Radic Biol Med 30:1191–1212CrossRefPubMedGoogle Scholar
  45. Schat H, Llugany M, Vooijs R, Hartley-Whitaker J, Bleeker P (2002) The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes. J Exp Bot 53:2381–2392CrossRefPubMedGoogle Scholar
  46. Schmöger MEV, Oven M, Grill E (2000) Detoxification of arsenic by phytochelatins in plants. Plant Physiol 122:793–801CrossRefPubMedGoogle Scholar
  47. Sharples JM, Meharg AA, Chambers SM, Cairney JWG (2000) Mechanism of arsenate resistance in the ericoid mycorrhizal fungus Hymenoscyphus ericae. Plant Physiol 124:1327–1334CrossRefPubMedGoogle Scholar
  48. Singh N, Ma LQ, Srivastava M, Rathinasabapathi B (2006) Metabolic adaptations to arsenic induced oxidative stress in Pteris vittata L. and Pteris ensiformis L. Plant Sci 170:274–282CrossRefGoogle Scholar
  49. Tausz M, Šircelj H, Grill D (2004) The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? J Exp Bot 55:1955–1962CrossRefPubMedGoogle Scholar
  50. Vráblíková H, Barták M, Wonisch A (2005) Changes in glutathione and xanthophyll cycle pigments in the high light-stressed lichens Umbilicaria antarctica and Lasallia pustulata. J Photochem Photobiol B 79:35–41CrossRefPubMedGoogle Scholar
  51. Wang J, Zhao F-J, Meharg AA, Raab A, Feldmann J, McGrath SP (2002) Mechanisms of Arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and Arsenic speciation. Plant Physiol 130:1552–1561CrossRefPubMedGoogle Scholar
  52. Zhang W, Cai Y, Downum KR, Ma LQ (2004) Thiol synthesis and arsenic hyperaccumulation in Pteris vittata (Chinese brake fern). Environ Pollut 131:337–345CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Tanja Mrak
    • 1
  • Zvonka Jeran
    • 1
  • Franc Batič
    • 2
  • Luigi Sanità di Toppi
    • 3
  1. 1.Department of Evironmental SciencesJožef Stefan InstituteLjubljanaSlovenia
  2. 2.Department of Agronomy, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
  3. 3.Department of Evolutionary and Functional BiologyUniversity of ParmaParmaItaly

Personalised recommendations