, Volume 22, Issue 5, pp 843–853 | Cite as

Impact of cadmium on aquatic bird Cairina moschata

  • Magali Lucia
  • Jean-Marc Andre
  • Patrice Gonzalez
  • Magalie Baudrimont
  • Karine Gontier
  • Regine Maury-Brachet
  • Stephane Davail


The impact on palmiped Cairina moschata of two levels of dietary cadmium (Cd) contamination (C1: 1 mg kg−1 and C10: 10 mg kg−1) was investigated on liver gene expression by real-time PCR. Genes involved in mitochondrial metabolism, in antioxidant defences, detoxification and in DNA damage repair were studied. Metallothionein (MT) protein levels and Cd bioaccumulation were also investigated in liver, kidneys and muscle. Male ducks were subjected to three periods of exposure: 10, 20 and 40 days. Cd was mainly bioaccumulated in kidneys first and in liver. The concentrations in liver and kidneys appeared to reach a stable level at 20 days of contamination even if the concentrations in muscle still increased. Cd triggered the enhancement of mitochondrial metabolism, the establishment of antioxidant defences (superoxide dismutase Mn and Cu/Zn; catalase) and of DNA repair from 20 days of contamination. Discrepancies were observed in liver between MT protein levels and MT gene up-regulation. MT gene expression appeared to be a late hour biomarker.


Cadmium Palmiped Cairina moschata Gene expression Metallothionein 



The authors would like to thank the Conseil Général des Landes (France) for their financial support and the INRA of Artiguères for technical help.


  1. Achard-Joris M, Gonzalez P, Marie V, Baudrimont M, Bourdineaud J-P (2006) Cytochrome c oxydase subunit I gene is up-regulated by cadmium in freshwater and marine bivalves. Biometals 19(3):237–244PubMedCrossRefGoogle Scholar
  2. Barjaktarovic L, Elliott JE, Scheuhammer AM (2002) Metal and metallothionein concentrations in scoter (Melanitta spp.) from the Pacific Northwest of Canada, 1989–1994. Arch Environ Contam Toxicol 43(4):486–491PubMedCrossRefGoogle Scholar
  3. Baudrimont M, Andres S, Durrieu G, Boudou A (2003) The key role of metallothioneins in the bivalve Corbicula fluminea during the depuration phase, after in situ exposure to Cd and Zn. Aquat Toxicol 63(2):89–102PubMedCrossRefGoogle Scholar
  4. Baudrimont M, Schäfer J, Marie V, Maury-Brachet R, Bossy C, Boudou A, Blanc G (2005) Geochemical survey and metal bioaccumulation of three bivalve species (Crassostrea gigas, Cerastoderma edule and Ruditapes philippinarum) in the Nord Médoc salt marshes (Gironde estuary, France). Sci Total Environ 337(1–3):265–280PubMedGoogle Scholar
  5. Berglund ÅMM, Sturve J, Förlin L, Nyholm NEI (2007) Oxidative stress in pied flycatcher (Ficedula hypoleuca) nestlings from metal contaminated environments in northern Sweden. Environ Res 105(3):330–339PubMedCrossRefGoogle Scholar
  6. Bertin G, Averbeck D (2006) Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 88(11):1549–1559PubMedCrossRefGoogle Scholar
  7. Berzina N, Markovs J, Isajevs S, Apsite M, Smirnova G (2007) Cadmium-induced enteropathy in domestic cocks: a biochemical and histological study after subchronic exposure. Basic Clin Pharmacol Toxicol 101(1):29–34PubMedCrossRefGoogle Scholar
  8. Boening DW (2000) Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40:1335–1351PubMedCrossRefGoogle Scholar
  9. Campian JL, Qian M, Gao X, Eaton JW (2004) Oxygen tolerance and coupling of mitochondrial electron transport. J Biol Chem 279(45):46580–46587PubMedCrossRefGoogle Scholar
  10. Capaldi RA (1990) Structure and assembly of cytochrome c oxidase. Arch Biochem Biophys 280(2):252–262PubMedCrossRefGoogle Scholar
  11. Carpenè E, Andreani G, Monari M, Castellani G, Isani G (2006) Distribution of Cd, Zn, Cu and Fe among selected tissues of the earthworm (Allolobophora caliginosa) and Eurasian woodcock (Scolopax rusticola). Sci Total Environ 363(1–3):126–135PubMedGoogle Scholar
  12. Dutton MD, Stephenson M, Klaverkamp JF (1993) A mercury saturation assay for measuring metallothionein in fish. Environ Toxicol Chem 12(7):1193–1202CrossRefGoogle Scholar
  13. Elliott JE, Scheuhammer AM (1997) Heavy metal and metallothionein concentrations in seabirds from the Pacific coast of Canada. Mar Pollut Bull 34(10):794–801CrossRefGoogle Scholar
  14. Erdogan Z, Erdogan S, Celik S, Unlu A (2005) Effects of ascorbic acid on cadmium-induced oxidative stress and performance of broilers. Biol Trace Elem Res 104(1):19–31PubMedCrossRefGoogle Scholar
  15. Eriyamremu G, Asagba S, Onyeneke E, Adaikpoh M (2005) Changes in carboxypeptidase A, dipeptidase and Na+/K+ ATPase activities in the intestine of rats orally exposed to different doses of cadmium. Biometals 18(1):1–6PubMedCrossRefGoogle Scholar
  16. Gómez G, Baos R, Gómara B, Jiménez B, Benito V, Montoro R, Hiraldo F, González MJ (2004) Influence of a mine tailing accident near Doñana National Park (Spain) on heavy metals, arsenic accumulation in 14 species of waterfowl (1998 to 2000). Arch Environ Contam Toxicol 47(4):521–529PubMedCrossRefGoogle Scholar
  17. Gonzalez P, Baudrimont M, Boudou A, Bourdineaud J-P (2006) Comparative effects of direct cadmium contamination on gene expression in gills, liver, skeletal muscles and brain of the zebrafish (Danio rerio). Biometals 19(3):225–235PubMedCrossRefGoogle Scholar
  18. Held DD, Hoekstra WG (1984) The effects of zinc deficiency on turnover of cadmium-metallothionein in rat liver. J Nutr 114(12):2274–2282PubMedGoogle Scholar
  19. Hernández LM, Gómara B, Fernández M, Jiménez B, González MJ, Baos R, Hiraldo F, Ferrer M, Benito V, Suñer MA, Devesa V, Muñoz O, Montoro R (1999) Accumulation of heavy metals and As in wetland birds in the area around Doñana National Park affected by the Aznalcollar toxic spill. Sci Total Environ 242(1–3):293–308PubMedCrossRefGoogle Scholar
  20. Hughes MR, Smits JE, Elliott JE, Bennett DC (2000) Morphological and pathological effects of cadmium ingestion on Pekin ducks exposed to saline. J Toxicol Environ Health A 61(7):591–608PubMedCrossRefGoogle Scholar
  21. Kalisinska E, Salicki W, Myslek P, Kavetska KM, Jackowski A (2004) Using the Mallard to biomonitor heavy metal contamination of wetlands in north-western Poland. Sci Total Environ 320(2–3):145–161PubMedGoogle Scholar
  22. Laurin DE, Klasing KC (1990) Roles of synthesis and degradation in the regulation of metallothionein accretion in a chicken macrophage-cell line. Biochem J 268(2):459–463PubMedGoogle Scholar
  23. Liu W, Zhu R-H, Li G-P, Wang D-C (2002) cDNA cloning, high-level expression, purification, and characterization of an avian Cu, Zn superoxide dismutase from Peking duck. Protein Expr Purif 25(3):379–388PubMedCrossRefGoogle Scholar
  24. Lock JW, Thompson DR, Furness RW, Bartle JA (1992) Metal concentrations in seabirds of the New Zealand region. Environ Pollut 75(3):289–300PubMedCrossRefGoogle Scholar
  25. Maury-Brachet R, Rochard E, Durrieu G, Boudou A (2008) The ‘Storm of the Century’ (December 1999) and the accidental escape of Siberian sturgeons (Acipenser baerii) into the Gironde estuary (Southwest France). Environ Sci Pollut Res Int 15:89–94PubMedCrossRefGoogle Scholar
  26. Moza U, De Silva SS, Mitchell BM (1995) Effect of sub-lethal concentrations of cadmium on food intake, growth and digestibility in the goldfish, Carassius auratus L. J Environ Biol 16:253–264Google Scholar
  27. Nam D-H, Anan Y, Ikemoto T, Tanabe S (2005) Multielemental accumulation and its intracellular distribution in tissues of some aquatic birds. Mar Pollut Bull 50(11):1347–1362PubMedCrossRefGoogle Scholar
  28. Pierron F, Baudrimont M, Lucia M, Durrieu G, Massabuau J-C, Elie P (2008) Cadmium uptake by the European eel: trophic transfer in field and experimental investigations. Ecotoxicol Environ Saf 70(1):10–19PubMedCrossRefGoogle Scholar
  29. Rothschild RFN, Duffy LK (2005) Mercury concentrations in muscle, brain and bone of Western Alaskan waterfowl. Sci Total Environ 349(1–3):277–283PubMedGoogle Scholar
  30. Trust KA, Rummel KT, Scheuhammer AM, Brisbin IL Jr, Hooper MJ (2000) Contaminant exposure and biomarker responses in spectacled eiders (Somateria fischeri) from St. Lawrence Island, Alaska. Arch Environ Contam Toxicol 38(1):107–113PubMedCrossRefGoogle Scholar
  31. Vasconcelos MH, Tam S-C, Hesketh JE, Reid M, Beattie JH (2002) Metal- and tissue-dependent relationship between metallothionein mRNA and protein. Toxicol Appl Pharmacol 182(2):91–97PubMedCrossRefGoogle Scholar
  32. Wang Y, Fang J, Leonard SS, Krishna Rao KM (2004) Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Radic Biol Med 36(11):1434–1443PubMedCrossRefGoogle Scholar
  33. White DH, Finley MT (1978) Uptake and retention of dietary cadmium in mallard ducks. Environ Res 17(1):53–59PubMedCrossRefGoogle Scholar
  34. Yano CL, Marcondes MCCG (2005) Cadmium chloride-induced oxidative stress in skeletal muscle cells in vitro. Free Radic Biol Med 39(10):1378–1384PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Magali Lucia
    • 1
  • Jean-Marc Andre
    • 1
  • Patrice Gonzalez
    • 2
  • Magalie Baudrimont
    • 2
  • Karine Gontier
    • 1
  • Regine Maury-Brachet
    • 2
  • Stephane Davail
    • 1
  1. 1.IPREM-EEM (Institut Pluridisciplinaire de Recherche sur l’Environnement et les Matériaux, Equipe Environnement et Microbiologie), UMR 5254IUT des Pays de l’AdourMont de Marsan CedexFrance
  2. 2.UMR CNRS 5805 EPOC, Team GEMA, Université Bordeaux 1ArcachonFrance

Personalised recommendations