, Volume 22, Issue 1, pp 131–139 | Cite as

Reduction of molybdate by sulfate-reducing bacteria

  • Keka C. Biswas
  • Nicole A. Woodards
  • Huifang Xu
  • Larry L. Barton


Molybdate is an essential trace element required by biological systems including the anaerobic sulfate-reducing bacteria (SRB); however, detrimental consequences may occur if molybdate is present in high concentrations in the environment. While molybdate is a structural analog of sulfate and inhibits sulfate respiration of SRB, little information is available concerning the effect of molybdate on pure cultures. We followed the growth of Desulfovibrio gigas ATCC 19364, Desulfovibrio vulgaris Hildenborough, Desulfovibrio desulfuricans DSM 642, and D. desulfuricans DSM 27774 in media containing sub-lethal levels of molybdate and observed a red-brown color in the culture fluid. Spectral analysis of the culture fluid revealed absorption peaks at 467, 395 and 314 nm and this color is proposed to be a molybdate–sulfide complex. Reduction of molybdate with the formation of molybdate disulfide occurs in the periplasm D. gigas and D. desulfuricans DSM 642. From these results we suggest that the occurrence of poorly crystalline Mo-sulfides in black shale may be a result from SRB reduction and selective enrichment of Mo in paleo-seawater.


Molybdate Molybdenum disulfide Transition metals Dissimilatory metal reduction Sulfate-reducing bacteria 



This research was supported in part by grants from DOE-WERC, MARC and IMSD grants from National Institute of Health, and NASA Astrobiology Institute (N07-5489). Support also was provided by Delaware EPSCoR through the Delaware Biotechnology Institute with funds from the National Science Foundation Grant EPS-0447610 and the State of Delaware. Genome analysis was from the Institute for Genomic Research Comprehensive Microbial Database at


  1. Banat IM, Lindström EB, Nedwell DB, Balba MT (1981) Evidence for coexistence of two distinct functional groups of sulfate-reducing bacteria on salt marsh sediment. Appl Environ Microbiol 42:985–992PubMedGoogle Scholar
  2. Barton LL, Fauque GD (2009) Biochemistry, physiology and biotechnology of sulfate-reducing bacteria. Adv Appl Microbiol 65 (in press)Google Scholar
  3. Barton LL, Plunkett RM, Thomson BM (2003) Reduction of metals and nonessential elements by anaerobes. In: Ljungdahl LG, Adams MW, Barton LL, Ferry JG, Johnson MK (eds) Biochemistry and Physiology of Anaerobic Bacteria. Springer, New York, pp 220–234CrossRefGoogle Scholar
  4. Barton LL, Goulhen F, Bruschi M, Woodards NA, Plunkett RM, Rietmeijer FJM (2007) The bacterial metallome: composition and stability with specific reference to the anaerobic bacterium Desulfovibrio desulfuricans. Biometals 20:291–302. doi: 10.1007/s10534-006-9059-2 PubMedCrossRefGoogle Scholar
  5. Brondino CD, Passeggi MC, Caldeira J, Almendra MJ, Feio MJ, Moura JJ, Moura I (2004) Incorporation of ether molybdenum or tungsten into formate dehydrogenase from Desulfovibrio alaskensis NCIMB 13491.EPR assignment of the proximal iron-sulfur cluster to the pterin cofactor in formate dehydrogenase from sulfate-reducing bacteria. J Biol Inorg Chem 9:145–151. doi: 10.1007/s00775-003-0506-z PubMedCrossRefGoogle Scholar
  6. Bruschi M, Barton LL, Goulhen F, Plunkett RM (2007) Enzymatic and genomic studies on the reduction of mercury and selected metallic oxyanions by sulphate-reducing bacteria. In: Barton LL, Hamilton WA (eds) Sulphate-reducing bacteria: environmental and engineered systems. Cambridge University Press, Cambridge, pp 435–458Google Scholar
  7. Campbell AM, del Campillo-Campbell A, Villaret DB (1985) Molybdate reduction by Escherichia coli K-12 and its chl mutants. Proc Natl Acad Sci USA 82:227–231. doi: 10.1073/pnas.82.1.227 PubMedCrossRefGoogle Scholar
  8. Chen G, Ford TE, Clayton CR (1998) Interaction of sulfate-reducing bacteria with molybdenum dissolved from sputter-deposited molybdenum thin films and pure molybdenum powder. J Colloid Interface Sci 204:237–246. doi: 10.1006/jcis.1998.5578 PubMedCrossRefGoogle Scholar
  9. Cooms J, Barkay T (2005) Horizontal gene transfer of metal homeostasis genes and its role in microbial communities of the deep terrestrial subsurface. In: Gadd GM, Semple KT, Lappin-Scott HM (eds) Sixty-fifth symposium of the society for general microbiology. Cambridge Univeristy Press, Cambridge, pp 109–130Google Scholar
  10. Czechowski M, Fauque G, Galliano N, Dimon B, Moura I, Moura JJG, Xavier AV, Barata AS, Lino A, LeGall J (1986) Purification and characterization of three proteins from a halophilic, sulfate-reducing bacterium, Desulfovibrio salexigens. J Ind Microbiol 1:139–147. doi: 10.1007/BF01569265 CrossRefGoogle Scholar
  11. Fan D (1983) Polyelements in the Lower Cambrian black shale series in southern China. In: Augustitithis SS (ed) The significance of trace elements in solving petrogenetic problems and controversies. Theophrastus Publications S.A., Athens, pp 447–474Google Scholar
  12. Grunden AM, Shanmugam KT (1997) Molybdate transport and regulation in bacteria. Arch Microbiol 168:345–354. doi: 10.1007/s002030050508 PubMedCrossRefGoogle Scholar
  13. Hatchikian EC, Bruschi M (1979) Isolation and characterization of a molybdenium iron-sulfur protein from Desulfovibrio africanus. Biochem Biophys Res Commun 86:725–734. doi: 10.1016/0006-291X(79)91773-X PubMedCrossRefGoogle Scholar
  14. He Q, Huang KH, He Z, Alm EJ, Fields MW, Hazen TC, Arkin AP, Wall JD, Zhou J (2006) Energetic consequences of nitrite stress in Desulfovibrio vulgaris Hildenborough, inferred from global transcription analysis. Appl Environ Microbiol 72:4370–4381. doi: 10.1128/AEM.02609-05 PubMedCrossRefGoogle Scholar
  15. Jonkers HM, van der Maarel MJEC, van Gemerden H, Hansen TA (1996) Dimethylsulfoxide reduction by marine sulfate-reducing bacteria. FEMS Microbiol Lett 136:283–287Google Scholar
  16. Kniemeyer O, Fischer T, Wilkes H, Glöckner FO, Widdel F (2003) Anaerobic degradation of ethylbenzene by a new type of marine sulfate-reducing bacterium. Appl Environ Microbiol 69:760–768. doi: 10.1128/AEM.69.2.760-768.2003 PubMedCrossRefGoogle Scholar
  17. Kredich NM (1987) Biosynthesis of cysteine. In: Ingraham JL, Brooks Low K, Magasanik B, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium cellular and molecular biology, vol 1. American Society for Microbiology, Washington DC, pp 419–428Google Scholar
  18. Lee J-W, Helmann JD (2007) Functional specialization within the Fur family of metalloregulators. Biometals 20:485–499. doi: 10.1007/s10534-006-9070-7 PubMedCrossRefGoogle Scholar
  19. Lespinat PA, Berlier YM, Fauque GD, Toci R, Denariaz G, LeGall J (1987) The relationship between hydrogen metabolism, sulfate reduction and nitrogen fixation in sulfate reducers. J Ind Microbiol 1:383–388. doi: 10.1007/BF01569336 CrossRefGoogle Scholar
  20. Li S, Gao Z (2000) Tracing the origin of precious metals in Lower Cambrian black shale (in Chinese). Sci China 30 D:169–174Google Scholar
  21. Lyimo TJ, Pol A, Op den Camp HJM (2002) Sulfate reduction and methanogenesis in sediments of Mtoni Mangrove Forest, Tanzania. Ambio 31:614–616. doi: 10.1639/0044-7447(2002)031[0614:SRAMIS]2.0.CO;2 PubMedCrossRefGoogle Scholar
  22. Mendel RR (2005) Molybdenum: biological activity and metabolism. Dalton Trans 21:3404–3409. doi: 10.1039/b505527j PubMedCrossRefGoogle Scholar
  23. Moura JJG, Barata BAS (1994) Aldehyde oxidoreductases and other molybdenum-containing enzymes. Methods Enzymol 243:24–42. doi: 10.1016/0076-6879(94)43006-3 CrossRefGoogle Scholar
  24. Moura JJG, Brondino CD, Trincao J, Romao MJ (2004) Mo and W bis-MGD enzymes: nitrate reductases and formate dehydrogenases. J Biol Inorg Chem 9:791–799. doi: 10.1007/s00775-004-0573-9 PubMedCrossRefGoogle Scholar
  25. Moura JJG, Gonzalez P, Moura I, Fauque G (2007) Dissimilatroy nitrate and nitrite ammonification by sulphate-reducing bacteria. In: Barton LL, Hamilton WA (eds) Sulphate-reducing bacteria: environmental and engineered systems. Cambridge University Press, Cambridge, pp 241–264Google Scholar
  26. Newport PJ, Nedwell DB (1988) The mechanisms of inhibition of Desulfovibrio and Desulfotomaculum species by selenate and molybdate. Appl Microbiol 65:419–423. doi: 10.1111/j.1365-2672.1988.tb01911.x CrossRefGoogle Scholar
  27. Peck HD Jr (1959) The ATP-dependent reduction of sulfate with hydrogen in extracts of Desulfovibrio desulfuricans. Proc Natl Acad Sci USA 45:701–708. doi: 10.1073/pnas.45.5.701 PubMedCrossRefGoogle Scholar
  28. Peck HD Jr (1961) The role of adenosine-5′-phosphosulfate in the reduction of sulfate to sulfite by Desulfovibrio desulfuricans. J Biol Chem 237:198–203Google Scholar
  29. Postgate JR, Kent HM (1985) Diazotrophy within Desulfovibrio. J Gen Microbiol 131:2119–2122Google Scholar
  30. Ranade DR, Dighe AS, Bhirangi SS, Panhalkar VS, Yeole TY (1999) Evaluation of the use of sodium molybdate to inhibit sulphite reduction during anaerobic digestion of distillery waste. Bioresour Technol 68:287–291. doi: 10.1016/S0960-8524(98)00149-7 CrossRefGoogle Scholar
  31. Rebelo J, Maciera S, Dias JM, Huber R, Ascenso CS, Rusnak F, Moura JJG, Moura I, Romao MJ (2000) Gene sequence and crystal structure of the aldehyde oxidoreductase from Desulfovibrio desulfuricans ATCC 27774. J Mol Biol 297:135–146. doi: 10.1006/jmbi.2000.3552 PubMedCrossRefGoogle Scholar
  32. Shukor MY, Habib SHM, Rahman MFA, Jirangon H, Abdullah MPA, Shamaan NA, Syed MA (2008) Hexavalent molybdenum reduction to molybdenum blue by S. marcescens strain Dr Y6. Appl Biochem Biotechnol 149:33–43. doi: 10.1007/s12010-008-8137-z PubMedCrossRefGoogle Scholar
  33. Tomei FA, Barton LL, Lemanski CL, Zocco TG, Fink NH, Sillerud LO (1995) Transformation of selenate and selenide to elemental selenium by Desulfovibrio desulfuricans. J Ind Microbiol 14:329–336. doi: 10.1007/BF01569947 CrossRefGoogle Scholar
  34. Tucker MD, Barton LL, Thomson BM (1997) Reduction and immobilization of molybdate by Desulfovibrio desulfuricans. J Environ Qual 26:1146–1152CrossRefGoogle Scholar
  35. Tucker MD, Baton LL, Thomson BM (1998) Reduction of Cr, Mo, Se and U by Desulfovibrio desulfuricans immobilized in polyacrylamide gels. J Ind Microbiol Biotechnol 20:13–19. doi: 10.1038/sj.jim.2900472 PubMedCrossRefGoogle Scholar
  36. Voordouw G (2002) Carbon Monoxide Cycling by Desulfovibrio vulgaris Hildenborough. J Bacteriol 184:5903–5911. doi: 10.1128/JB.184.21.5903-5911.2002 PubMedCrossRefGoogle Scholar
  37. Williams RJP, Frausto da Silva JJR (2002) The involvement of molybdenum in life. Biochem Biophys Res Commun 292:293–299. doi: 10.1006/bbrc.2002.6518 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Keka C. Biswas
    • 1
  • Nicole A. Woodards
    • 2
  • Huifang Xu
    • 3
  • Larry L. Barton
    • 2
  1. 1.Department of ScienceWesley CollegeDoverUSA
  2. 2.Department of Biology, Laboratory of Microbial ChemistryUniversity of New MexicoAlbuquerqueUSA
  3. 3.Department of Geology and GeophysicsUniversity of WisconsinMadisonUSA

Personalised recommendations