, Volume 22, Issue 1, pp 159–175 | Cite as

Can copper binding to the prion protein generate a misfolded form of the protein?

  • M. Jake Pushie
  • Arvi Rauk
  • Frank R. Jirik
  • Hans J. Vogel


The native prion protein (PrP) has a two domain structure, with a globular folded α-helical C-terminal domain and a flexible extended N-terminal region. The latter can selectively bind Cu2+ via four His residues in the octarepeat (OR) region, as well as two sites (His96 and His111) outside this region. In the disease state, the folded C-terminal domain of PrP undergoes a conformational change, forming amorphous aggregates high in β-sheet content. Cu2+ bound to the ORs can be redox active and has been shown to induce cleavage within the OR region, a process requiring conserved Trp residues. Using computational modeling, we have observed that electron transfer from Trp residues to copper can be favorable. These models also reveal that an indole-based radical cation or Cu+ can initiate reactions leading to protein backbone cleavage. We have also demonstrated, by molecular dynamics simulations, that Cu2+ binding to the His96 and His111 residues in the remaining PrP N-terminal fragment can induce localized β-sheet structure, allowing us to suggest a potential mechanism for the initiation of β-sheet misfolding in the C-terminal domain by Cu2+.


Prion protein Copper binding β-cleavage Protein misfolding Oxidative damage Molecular dynamics Density functional theory 



Circular dichroism


Density functional theory


Molecular dynamics




Prion protein


Cellular form of the prion protein


Scrapie isoform of the prion protein


Reactive oxygen species



HJV holds a Scientist award from the Alberta Heritage Foundation for Medical Research. This research has been enabled by the use of WestGrid computing resources, which are funded in part by the Canada Foundation for Innovation, Alberta Innovation and Science, BC Advanced Education, and the participating research institutions. Operating support was obtained from the Canadian Genetic Diseases Network and the Alberta Agricultural Research Institute (to FRJ and HJV), as well as the Natural Sciences and Engineering Research Council (to AR). FRJ held a Canada Research Chairs award. MJP was the recipient of a Studentship award from the Alberta Ingenuity Fund.


  1. Antwi K, Mahar M, Srikanth R, Olbris MR, Tyson JF, Vachet RW (2008) Cu(II) organizes beta-2-microglobulin oligomers but is released upon amyloid formation. Protein Sci 17:748–759. doi: 10.1110/ps.073249008 PubMedCrossRefGoogle Scholar
  2. Aronoff-Spencer E, Burns CS, Avdievich NI, Gerfen GJ, Peisach J, Antholine WE, Ball HL, Cohen FE, Prusiner SB, Millhauser GL (2000) Identification of the Cu2+ binding sites in the N-terminal domain of the prion protein by EPR and CD spectroscopy. Biochemistry 39:13760–13771. doi: 10.1021/bi001472t PubMedCrossRefGoogle Scholar
  3. Bergström A-L, Chabry J, Bastholm L, Heegaard PMH (2007) Oxidation reduces the fibrillation but not the neurotoxicity of the prion peptide PrP106–126. Biochim Biophys Acta 1774:1118–1127PubMedGoogle Scholar
  4. Bonomo RP, Imperllizzeri G, Pappalardo G, Rizzarelli E, Tabbì G (2000) Copper(II) binding modes in the prion octapeptide PHGGGWGQ: a spectroscopic and voltammetric study. Chemistry (Easton) 6:4195–4202Google Scholar
  5. Burns CS, Aronoff-Spencer E, Dunham CM, Lario P, Avdievich NI, Antholine WE, Olmstead MM, Vrielink A, Gerfen GJ, Peisach J, Scott WG, Millhauser GL (2002) Molecular features of the copper binding sites in the octarepeat domain of the prion protein. Biochemistry 41:3991–4001. doi: 10.1021/bi011922x PubMedCrossRefGoogle Scholar
  6. Campbell TA, Palmer MS, Will RG, Gibb WR, Luthert PJ, Collinge J (1996) A prion disease with a novel 96-base pair insertional mutation in the prion protein gene. Neurology 46:761–766PubMedGoogle Scholar
  7. Canello T, Engelstein R, Moshel O, Xanthopoulos K, Juanes ME, Langeveld J, Sklaviadis T, Gasset M, Gabizon R (2008) Methionine sulfoxides on PrPSc: a prion-specific covalent signature. Biochemistry 47:8866–8873. doi: 10.1021/bi800801f PubMedCrossRefGoogle Scholar
  8. Caughey B (2003) Prion protein conversions: insight into mechanisms, TSE transmission barriers and strains. Br Med Bull 66:109–120. doi: 10.1093/bmb/66.1.109 PubMedCrossRefGoogle Scholar
  9. Chattopadhyay M, Walter ED, Newell DJ, Jackson PJ, Aronoff-Spencer E, Peisach J, Gerfen GJ, Bennett B, Antholine WE, Millhauser GL (2005) The octarepeat domain of the prion protein binds Cu(II) with three distinct coordination modes at pH 7.4. J Am Chem Soc 127:12647–12656. doi: 10.1021/ja053254z PubMedCrossRefGoogle Scholar
  10. Checler F, Vincent B (2002) Alzheimer’s and prion diseases: distinct pathologies, common proteolytic denominators. Trends Neurosci 25:616–620. doi: 10.1016/S0166-2236(02)02263-4 PubMedCrossRefGoogle Scholar
  11. Chen SG, Teplow DB, Parchi P, Teller JK, Gambetti P, Autilio-Gambetti L (1995) Truncated forms of the human prion protein in normal brain and in prion diseases. J Biol Chem 270:19173–19180. doi: 10.1074/jbc.270.32.19173 PubMedCrossRefGoogle Scholar
  12. Cochran EJ, Bennett DA, Cervenakova L, Kenney K, Bernard B, Foster NL, Benson DF, Goldfarb LG, Brown P (1996) Familial Creutzfeldt-Jakob disease with a five-repeat octapeptide insert mutation. Neurology 47:727–733PubMedGoogle Scholar
  13. Collinge J, Harding AE, Owen F, Poulter M, Lofthouse R, Boughey AM, Shah T, Crow TJ (1989) Diagnosis of Gerstmann–Sträussler syndrome in familial dementia with prion protein gene analysis. Lancet 2:15–17. doi: 10.1016/S0140-6736(89)90256-0 PubMedCrossRefGoogle Scholar
  14. Collinge J, Brown J, Hardy J, Mullan M, Rossor MN, Baker H, Crow TJ, Lofthouse R, Poulter M, Ridley R, Owen F, Bennett C, Dunn G, Harding AE, Quinn N, Doshi B, Roberts GW, Honavar M, Janota I, Lantos PL (1992) Inherited prion disease with 144 base pair gene insertion. 2. Clinical and pathological features. Brain 115:687–710. doi: 10.1093/brain/115.3.687 PubMedCrossRefGoogle Scholar
  15. Cordeiro Y, Kraineva J, Gomes MP, Lopes MH, Martins VR, Lima LM, Foguel D, Winter R, Silva JL (2005) The amino-terminal PrP domain is crucial to modulate prion misfolding and aggregation. Biophys J 89:2667–2676. doi: 10.1529/biophysj.105.067603 PubMedCrossRefGoogle Scholar
  16. Davis AV, O’Halloran TV (2008) A place for thioether chemistry in cellular copper ion recognition and trafficking. Nat Chem Biol 4:148–151. doi: 10.1038/nchembio0308-148 PubMedCrossRefGoogle Scholar
  17. De Gioia L, Selvaggini C, Ghibaudi E, Diomede L, Bugiani O, Forloni G, Tagliavini F, Salmona M (1994) Conformational polymorphism of the amyloidogenic and neurotoxic peptide homologous to residues 106–126 of the prion protein. J Biol Chem 269:7859–7862PubMedGoogle Scholar
  18. Erlich P, Cesbron JY, Lemaire-Vieille C, Curt A, Andrieu JP, Schoehn G, Jamin M, Gagnon J (2008) PrP N-terminal domain triggers PrP(Sc)-like aggregation of Dpl. Biochem Biophys Res Commun 2365:478–483. doi: 10.1016/j.bbrc.2007.10.202 CrossRefGoogle Scholar
  19. Evleth EM, Chalvet O, Bamlère P (1977) Theoretical analysis of the photophysical properties of indole, the ondolyl radical, and the indole radical cation. J Phys Chem 81:1913–1917. doi: 10.1021/j100535a006 CrossRefGoogle Scholar
  20. Flechsig E, Shmerling D, Hegyi I, Raeber AJ, Fischer M, Cozzio A, von Mering C, Aguzzi A, Weissmann C (2000) Prion protein devoid of the octapeptide repeat region restores susceptibility to scrapie in PrP knockout mice. Neuron 27:399–408. doi: 10.1016/S0896-6273(00)00046-5 PubMedCrossRefGoogle Scholar
  21. Garnett AP, Jones CE, Viles JH (2006) A survey of diamagnetic probes for copper2+ binding to the prion protein. 1H NMR solution structure of the palladium2+ bound single octarepeat. J Chem Soc Dalton Trans 509–518. doi: 10.1039/b511553a
  22. Goldfarb LG, Brown P, McCombie WR, Goldgaber D, Swergold GD, Wills PR, Cervenakova L, Baron H, Gibbs CJ Jr, Gajdusek DC (1991) Transmissible familial Creutzfeldt–Jakob disease associated with five, seven, and eight extra octapeptide coding repeats in the PRNP gene. Proc Natl Acad Sci USA 88:10926–10930. doi: 10.1073/pnas.88.23.10926 PubMedCrossRefGoogle Scholar
  23. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658. doi: 10.1111/j.1471-4159.2006.03907.x PubMedCrossRefGoogle Scholar
  24. Harford C, Sarkar B (1997) Amino terminal Cu(II)- and Ni(II)-binding (ATCUN) motif of proteins and peptides: metal binding, DNA cleavage, and other properties. Acc Chem Res 30:123–130. doi: 10.1021/ar9501535 CrossRefGoogle Scholar
  25. Hartter DE, Barnea A (1988) Evidence for release of copper in the brain: depolarization-induced release of newly taken-up 67copper. Synapse 2:412–415. doi: 10.1002/syn.890020408 PubMedCrossRefGoogle Scholar
  26. Herms J, Tings T, Gall S, Madlung A, Giese A, Siebert H, Schürmann P, Windl O, Brose N, Kretzschmar H (1999) Evidence of presynaptic location and function of the prion protein. J Neurosci 19:8866–8875PubMedGoogle Scholar
  27. Hornshaw MP, McDermott JR, Candy JM (1995) Copper binding to the N-terminal tandem repeat regions of mammalian and avian prion protein. Biochem Biophys Res Commun 207:621–629. doi: 10.1006/bbrc.1995.1233 PubMedCrossRefGoogle Scholar
  28. Huang ML, Rauk A (2004) Structure and reactions of the peroxy radicals of glycine and alanine in peptides: an ab initio study. J Phys Org Chem 17:777–786. doi: 10.1002/poc.794 CrossRefGoogle Scholar
  29. Huang X, Moir RD, Tanzi RE, Bush AI, Rogers JT (2004) Redox-active metals, oxidative stress, and Alzheimer’s disease pathology. Ann N Y Acad Sci 1012:153–163. doi: 10.1196/annals.1306.012 PubMedCrossRefGoogle Scholar
  30. Jiménez-Huete A, Lievens PM, Vidal R, Piccardo P, Ghetti B, Tagliavini F, Frangione B, Prelli F (1998) Endogenous proteolytic cleavage of normal and disease-associated isoforms of the human prion protein in neural and non-neural tissues. Am J Pathol 153:1561–1572PubMedGoogle Scholar
  31. Jones CE, Abdelraheim SR, Brown DR, Viles JH (2004) Preferential Cu2+ coordination by His96 and His111 induces beta-sheet formation in the unstructured amyloidogenic region of the prion protein. J Biol Chem 279:32018–32027. doi: 10.1074/jbc.M403467200 PubMedCrossRefGoogle Scholar
  32. Klewpatinond M, Davies P, Bowen S, Brown DR, Viles JH (2008) Deconvoluting the Cu2+ binding modes of full-length prion protein. J Biol Chem 283:1870–1881PubMedCrossRefGoogle Scholar
  33. Laplanche JL, Delasnerie-Laupretre N, Brandel JP, Dussaucy M, Chatelain J, Launay JM (1995) Two novel insertions in the prion protein gene in patients with late onset dementia. Hum Mol Genet 4:1109–1111. doi: 10.1093/hmg/4.6.1109 PubMedCrossRefGoogle Scholar
  34. Laplanche JL, Hachimi KH, Durieux I, Thuillet P, Defebvre L, Delasnerie-Laupretre N, Peoc’h K, Foncin JF, Destee A (1999) Prominent psychiatric features and early onset in an inherited prion disease with a new insertional mutation in the prion protein gene. Brain 122:2375–2386. doi: 10.1093/brain/122.12.2375 PubMedCrossRefGoogle Scholar
  35. Leliveld SR, Dame RT, Wuite GJ, Stitz L, Korth C (2006) The expanded octarepeat domain selectively binds prions and disrupts homomeric prion protein interactions. J Biol Chem 281:3268–3275. doi: 10.1074/jbc.M510606200 PubMedCrossRefGoogle Scholar
  36. Leliveld SR, Stitz L, Korth C (2008) Expansion of the octarepeat domain alters the misfolding pathway but not the folding pathway of the prion protein. Biochemistry 47:6267–6278. doi: 10.1021/bi800253c PubMedCrossRefGoogle Scholar
  37. Mangé A, Béranger F, Peoc’h K, Onodera T, Frobert Y, Lehmann S (2004) Alpha- and beta-cleavages of the amino-terminus of the cellular prion protein. Biol Cell 96:125–132. doi: 10.1016/j.biolcel.2003.11.007 PubMedCrossRefGoogle Scholar
  38. McMahon HE, Mange A, Nishida N, Creminon C, Casanova D, Lehmann S (2001) Cleavage of the amino terminus of the prion protein by reactive oxygen species. J Biol Chem 276:2286–2291. doi: 10.1074/jbc.M007243200 PubMedCrossRefGoogle Scholar
  39. Millhauser GL (2007) Copper and the prion protein: methods, structures, function, and disease. Annu Rev Phys Chem 58:299–320. doi: 10.1146/annurev.physchem.58.032806.104657 PubMedCrossRefGoogle Scholar
  40. Mitteregger G, Vosko M, Krebs B, Xiang W, Kohlmannsperger V, Nölting S, Hamann GF, Kretzschmar HA (2007) The role of the octarepeat region in neuroprotective function of the cellular prion protein. Brain Pathol 17:174–183. doi: 10.1111/j.1750-3639.2007.00061.x PubMedCrossRefGoogle Scholar
  41. Miura T, Sasaki S, Toyama A, Takeuchi H (2005) Copper reduction by the octapeptide repeat region of prion protein: pH dependence and implications in cellular copper uptake. Biochemistry 44:8712–8720. doi: 10.1021/bi0501784 PubMedCrossRefGoogle Scholar
  42. Nadal RC, Abdelraheim SR, Brazier MW, Rigby SE, Brown DR, Viles JH (2007) Prion protein does not redox-silence Cu2+, but is a sacrificial quencher of hydroxyl radicals. Free Radic Biol Med 42:79–89. doi: 10.1016/j.freeradbiomed.2006.09.019 PubMedCrossRefGoogle Scholar
  43. Opazo C, Barría MI, Ruiz FH, Inestrosa NC (2003) Copper reduction by copper binding proteins and its relation to neurodegenerative diseases. Biometals 16:91–98. doi: 10.1023/A:1020795422185 PubMedCrossRefGoogle Scholar
  44. Osz K, Nagy Z, Pappalardo G, Di Natale G, Sanna D, Micera G, Rizzarelli E, Sóvágó I (2007) Copper(II) interaction with prion peptide fragments encompassing histidine residues within and outside the octarepeat domain: speciation, stability constants and binding details. Chemistry 13:7129–7143. doi: 10.1002/chem.200601568 PubMedCrossRefGoogle Scholar
  45. Owen F, Poulter M, Lofthouse R, Collinge J, Crow TJ, Risby D, Baker HF, Ridley RM, Hsiao K, Prusiner SB (1989) Insertion in prion protein gene in familial Creutzfeldt–Jakob disease. Lancet 1:51–52. doi: 10.1016/S0140-6736(89)91713-3 PubMedCrossRefGoogle Scholar
  46. Owen F, Poulter M, Collinge J, Leach M, Shah T, Lofthouse R, Chen YF, Crow TJ, Harding AE, Hardy J, Rossor MN (1991) Insertions in the prion protein gene in atypical dementias. Exp Neurol 112:240–242. doi: 10.1016/0014-4886(91)90075-N PubMedCrossRefGoogle Scholar
  47. Pamplona R, Naudí A, Gavín R, Pastrana MA, Sajnani G, Ilieva EV, Del Río JA, Portero-Otín M, Ferrer I, Requena JR (2008) Increased oxidation, glycoxidation, and lipoxidation of brain proteins in prion disease. Free Radic Biol Med 45:1159–1166. doi: 10.1016/j.freeradbiomed.2008.07.009 PubMedCrossRefGoogle Scholar
  48. Pauly PC, Harris DA (1998) Copper stimulates endocytosis of the prion protein. J Biol Chem 273:33107–33110. doi: 10.1074/jbc.273.50.33107 PubMedCrossRefGoogle Scholar
  49. Perera WS, Hooper NM (2001) Ablation of the metal ion-induced endocytosis of the prion protein by disease-associated mutation of the octarepeat region. Curr Biol 11:519–523. doi: 10.1016/S0960-9822(01)00147-6 PubMedCrossRefGoogle Scholar
  50. Prusiner SB (1991) Molecular biology of prion diseases. Science 252:1515–1522. doi: 10.1126/science.1675487 PubMedCrossRefGoogle Scholar
  51. Pushie MJ, Rauk A (2003) Computational studies of Cu(II)[peptide] binding motifs: Cu[HGGG] and Cu[HG] as models for Cu(II) binding to the prion protein octarepeat region. J Biol Inorg Chem 8:53–65. doi: 10.1007/s00775-002-0386-7 PubMedCrossRefGoogle Scholar
  52. Pushie MJ, Vogel HJ (2007) Molecular dynamics simulations of two tandem octarepeats from the mammalian prion protein: fully Cu2+-bound and metal-free forms. Biophys J 93:3762–3774. doi: 10.1529/biophysj.107.109512 PubMedCrossRefGoogle Scholar
  53. Pushie MJ, Vogel HJ (2008) Modeling by assembly and molecular dynamics simulations of the low Cu2+ occupancy form of the mammalian prion protein octarepeat region: gaining insight into Cu2+-mediated β-cleavage. Biophys J 95:5084–5091. doi: 10.1529/biophysj.108.139568 PubMedCrossRefGoogle Scholar
  54. Pushie MJ, Vogel HJ (2009) A potential mechanism for Cu2+ reduction, β-cleavage and β-sheet initiation within the N-terminal domain of the prion protein: insights from density functional theory and molecular dynamics calculations. J Toxicol Environ Health A (in press)Google Scholar
  55. Pushie MJ, Ross ARS, Vogel HJ (2007) Mass spectrometric determination of the coordination geometry of potential copper(II) surrogates for the mammalian prion protein octarepeat region. Anal Chem 79:5659–6767. doi: 10.1021/ac070312l PubMedCrossRefGoogle Scholar
  56. Rauk A (2008) Why is the amyloid beta peptide of Alzheimer’s disease neurotoxic? J Chem Soc Dalton Trans 1273–1282. doi: 10.1039/b718601k
  57. Rauk A, Yu D, Taylor J, Shustov GV, Block DA, Armstrong DA (1999) Effects of structure on αC-H bond enthalpies of amino acid residues: relevance to H transfers in enzyme mechanisms and in protein oxidation. Biochemistry 38:9089–9096PubMedCrossRefGoogle Scholar
  58. Requena JR, Groth D, Legname G, Stadtman ER, Prusiner SB, Levine RL (2001) Copper-catalyzed oxidation of the recombinant SHa(29–231) prion protein. Proc Natl Acad Sci USA 98:7170–7175. doi: 10.1073/pnas.121190898 PubMedCrossRefGoogle Scholar
  59. Ruiz FH, Silva E, Inestrosa NC (2000) The N-terminal tandem repeat region of human prion protein reduces copper: role of tryptophan residues. Biochem Biophys Res Commun 269:491–495. doi: 10.1006/bbrc.2000.2270 PubMedCrossRefGoogle Scholar
  60. Selvaggini C, De Gioia L, Cantù L, Ghibaudi E, Diomede L, Passerini F, Forloni G, Bugiani O, Tagliavini F, Salmona M (1993) Molecular characteristics of a protease-resistant, amyloidogenic and neurotoxic peptide homologous to residues 106–126 of the prion protein. Biochem Biophys Res Commun 194:1380–1386. doi: 10.1006/bbrc.1993.1977 PubMedCrossRefGoogle Scholar
  61. Shearer J, Soh P (2007) The copper(II) adduct of the unstructured region of the amyloidogenic fragment derived from the human prion protein is redox-active at physiological pH. Inorg Chem 46:710–719. doi: 10.1021/ic061236s PubMedCrossRefGoogle Scholar
  62. Shearer J, Soh P, Lentz S (2008) Both Met(109) and Met(112) are utilized for Cu(II) coordination by the amyloidogenic fragment of the human prion protein at physiological pH. J Inorg Biochem 102:2103–2113. doi: 10.1016/j.jinorgbio.2008.07.016 PubMedCrossRefGoogle Scholar
  63. Sigurdson CJ, Aguzzi A (2007) Chronic wasting disease. Biochim Biophys Acta 1772:610–618PubMedGoogle Scholar
  64. Sigurdsson EM, Brown DR, Alim MA, Scholtzova H, Carp R, Meeker HC, Prelli F, Frangione B, Wisniewski T (2003) Copper chelation delays the onset of prion disease. J Biol Chem 278:46199–46202. doi: 10.1074/jbc.C300303200 PubMedCrossRefGoogle Scholar
  65. Srikanth R, Wilson J, Burns CS, Vachet RW (2008) Identification of the copper(II) coordinating residues in the prion protein by metal-catalyzed oxidation mass spectrometry: evidence for multiple isomers at low copper(II) loadings. Biochemistry 47:9258–9268. doi: 10.1021/bi800970m PubMedCrossRefGoogle Scholar
  66. Stöckel J, Safar J, Wallace AC, Cohen FE, Prusiner SB (1998) Prion protein selectively binds copper(II) ions. Biochemistry 37:7185–7193. doi: 10.1021/bi972827k PubMedCrossRefGoogle Scholar
  67. Tsutsui S, Hahn JN, Johnson TA, Ali Z, Jirik FR (2008) Absence of the cellular prion protein exacerbates and prolongs neuroinflammation in experimental autoimmune encephalomyelitis. Am J Pathol 173:1029–1041. doi: 10.2353/ajpath.2008.071062 PubMedCrossRefGoogle Scholar
  68. van Gool WA, Hensels GW, Hoogerwaard EM, Wiezer JH, Wesseling P, Bolhuis PA (1995) Hypokinesia and presenile dementia in a Dutch family with a novel insertion in the prion protein gene. Brain 118:1565–1571. doi: 10.1093/brain/118.6.1565 PubMedCrossRefGoogle Scholar
  69. Vassallo N, Herms J (2003) Cellular prion protein function in copper homeostasis and redox signalling at the synapse. J Neurochem 86:538–544. doi: 10.1046/j.1471-4159.2003.01882.x PubMedCrossRefGoogle Scholar
  70. Walter ED, Stevens DJ, Visconte MP, Millhauser GL (2007) The prion protein is a combined zinc and copper binding protein: Zn2+ alters the distribution of Cu2+ coordination modes. J Am Chem Soc 129:15440–15441. doi: 10.1021/ja077146j PubMedCrossRefGoogle Scholar
  71. Watt NT, Hooper NM (2005) Reactive oxygen species (ROS)-mediated β-cleavage of the prion protein in the mechanism of the cellular response to oxidative stress. Biochem Soc Trans 33:1123–1125. doi: 10.1042/BST20051123 PubMedCrossRefGoogle Scholar
  72. Weissmann C, Flechsig E (2003) PrP knock-out and PrP transgenic mice in prion research. Br Med Bull 66:43–60. doi: 10.1093/bmb/66.1.43 PubMedCrossRefGoogle Scholar
  73. Wells MA, Jackson GS, Jones S, Hosszu LLP, Craven CJ, Clarke AR, Collinge J, Waltho JP, Jackson GS (2006a) A reassessment of copper (II) binding in the full-length prion protein. Biochem J 399:435–444. doi: 10.1042/BJ20060458 PubMedCrossRefGoogle Scholar
  74. Wells MA, Jelinska C, Hosszu LLP, Craven CJ, Clarke AR, Collinge J, Waltho JP, Jackson GS (2006b) Multiple forms of copper (II) coordination occur throughout the disordered N-terminal region of the prion protein at pH 7.4. Biochem J 400:501–510. doi: 10.1042/BJ20060721 PubMedCrossRefGoogle Scholar
  75. Windl O, Giese A, Schulz-Schaeffer W, Zerr I, Skworc K, Arendt S, Oberdieck C, Bodemer M, Poser S, Kretzschmar HA (1999) Molecular genetics of human prion diseases in Germany. Hum Genet 105:244–252. doi: 10.1007/s004390051096 PubMedCrossRefGoogle Scholar
  76. Wood GPF, Easton CJ, Rauk A, Davies MJ, Radom L (2006) Effect of side chains on competing pathways for β-scission reactions of peptide-backbone alkoxyl radicals. J Phys Chem A 110:10316–10323. doi: 10.1021/jp062916j PubMedCrossRefGoogle Scholar
  77. Wopfner F, Weidenhöfer G, Schneider R, von Brunn A, Gilch S, Schwarz TF, Werner T, Schätzl HM (1999) Analysis of 27 mammalian and 9 avian PrPs reveals high conservation of flexible regions of the prion protein. J Mol Biol 289:1163–1178. doi: 10.1006/jmbi.1999.2831 PubMedCrossRefGoogle Scholar
  78. Yin S, Yu S, Li C, Wong P, Chang B, Xiao F, Kang SC, Yan H, Xiao G, Grassi J, Tien P, Sy MS (2006) Prion proteins with insertion mutations have altered N-terminal conformation and increased ligand binding activity and are more susceptible to oxidative attack. J Biol Chem 281:10698–10705. doi: 10.1074/jbc.M511819200 PubMedCrossRefGoogle Scholar
  79. Yuan J, Xiao X, McGeehan J, Dong Z, Cali I, Fujioka H, Kong Q, Kneale G, Gambetti P, Zou WQ (2006) Insoluble aggregates and protease-resistant conformers of prion protein in uninfected human brains. J Biol Chem 281:34848–34858. doi: 10.1074/jbc.M602238200 PubMedCrossRefGoogle Scholar
  80. Yuan J, Dong Z, Guo JP, McGeehan J, Xiao X, Wang J, Cali I, McGeer PL, Cashman NR, Bessen R, Surewicz WK, Kneale G, Petersen RB, Gambetti P, Zou WQ (2008) Accessibility of a critical prion protein region involved in strain recognition and its implications for the early detection of prions. Cell Mol Life Sci 65:631–643. doi: 10.1007/s00018-007-7478-z PubMedCrossRefGoogle Scholar
  81. Zhu F, Davies P, Thompsett AR, Kelly SM, Tranter GE, Hecht L, Isaacs NW, Brown DR, Barron LD (2008) Raman optical activity and circular dichroism reveal dramatic differences in the influence of divalent copper and manganese ions on prion protein folding. Biochemistry 47:2510–2517PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • M. Jake Pushie
    • 1
  • Arvi Rauk
    • 2
  • Frank R. Jirik
    • 3
  • Hans J. Vogel
    • 1
  1. 1.Structural Biology Research Group, Department of Biological SciencesUniversity of CalgaryCalgaryCanada
  2. 2.Department of ChemistryUniversity of CalgaryCalgaryCanada
  3. 3.Department of Biochemistry and Molecular Biology, The McCaig Institute for Bone and Joint HealthUniversity of CalgaryCalgaryCanada

Personalised recommendations