Advertisement

BioMetals

, Volume 22, Issue 1, pp 77–87 | Cite as

Interacting signals in the control of hepcidin expression

  • Deepak Darshan
  • Gregory J. Anderson
Article

Abstract

The amount of iron in the plasma is determined by the regulated release of iron from most body cells, but macrophages, intestinal enterocytes and hepatocytes play a particularly important role in this process. This cellular iron efflux is modulated by the liver-derived peptide hepcidin, and this peptide is now regarded as the central regulator of body iron homeostasis. Hepcidin expression is influenced by systemic stimuli such as iron stores, the rate of erythropoiesis, inflammation, hypoxia and oxidative stress. These stimuli control hepcidin levels by acting through hepatocyte cell surface proteins including HFE, transferrin receptor 2, hemojuvelin, TMPRSS6 and the IL-6R. The surface proteins activate various cell signal transduction pathways, including the BMP-SMAD, JAK-STAT and HIF1 pathways, to alter transcription of HAMP, the gene which encodes hepcidin. It is becoming increasingly apparent that various stimuli can signal through multiple pathways to regulate hepcidin expression, and the interplay between positive and negative stimuli is critical in determining the net hepcidin level. The BMP-SMAD pathway appears to be particularly important and disruption of this pathway will abrogate the response of hepcidin to many stimuli.

Keywords

Hepcidin Iron homeostasis Hemochromatosis BMP-SMAD pathway Iron deficiency 

Notes

Acknowledgements

GJA is supported by a Senior Research Fellowship from the National Health and Medical Research Council of Australia.

References

  1. Adamsky K, Weizer O, Amariglio N et al (2004) Decreased hepcidin mRNA expression in thalassemic mice. Br J Haematol 124:123–124. doi: 10.1046/j.1365-2141.2003.04734.x PubMedCrossRefGoogle Scholar
  2. Ahmad KA, Ahmann JR, Migas MC et al (2002) Decreased liver hepcidin expression in the Hfe knockout mouse. Blood Cells Mol Dis 29:361–366. doi: 10.1006/bcmd.2002.0575 PubMedCrossRefGoogle Scholar
  3. Ameln H, Gustafsson T, Sundberg CJ et al (2005) Physiological activation of hypoxia inducible factor-1 in human skeletal muscle. FASEB J 19:1009–1011PubMedGoogle Scholar
  4. Babitt JL, Huang FW, Xia Y et al (2007) Modulation of bone morphogenetic protein signaling in vivo regulates systemic iron balance. J Clin Invest 117:1933–1939. doi: 10.1172/JCI31342 PubMedCrossRefGoogle Scholar
  5. Babitt JL, Huang FW, Wrighting DM et al (2006) Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat Genet 38:531–539. doi: 10.1038/ng1777 PubMedCrossRefGoogle Scholar
  6. Bekri S, Gual P, Anty R et al (2006) Increased adipose tissue expression of hepcidin in severe obesity is independent from diabetes and NASH. Gastroenterology 131:788–796. doi: 10.1053/j.gastro.2006.07.007 PubMedCrossRefGoogle Scholar
  7. Bennett MJ, Lebron JA, Bjorkman PJ (2000) Crystal structure of the hereditary hemochromatosis protein HFE complexed with transferrin receptor. Nature 403:46–53. doi: 10.1038/47417 PubMedCrossRefGoogle Scholar
  8. Bralet MP, Duclos-Vallee JC, Castaing D et al (2004) No hepatic iron overload 12 years after liver transplantation for hereditary hemochromatosis. Hepatology 40:762. doi: 10.1002/hep.20398 author reply 762PubMedCrossRefGoogle Scholar
  9. Bridle KR, Frazer DM, Wilkins SJ et al (2003) Disrupted hepcidin regulation in HFE-associated hemochromatosis and the liver as a regulator of body iron homoeostasis. Lancet 361:669–673. doi: 10.1016/S0140-6736(03)12602-5 PubMedCrossRefGoogle Scholar
  10. Brittenham GM (1994) The red cell cycle. In: Brock JH, Halliday JW, Pippard MJ, Powell LW (eds) Iron metabolism in health and disease. WB Suanders Company Ltd, London, pp 31–62Google Scholar
  11. Calzolari A, Raggi C, Deaglio S et al (2006) TfR2 localizes in lipid raft domains and is released in exosomes to activate signal transduction along the MAPK pathway. J Cell Sci 119:4486–4498. doi: 10.1242/jcs.03228 PubMedCrossRefGoogle Scholar
  12. Camaschella C, Roetto A, Cali A et al (2000) The gene TFR2 is mutated in a new type of hemochromatosis mapping to 7q22. Nat Genet 25:14–15. doi: 10.1038/75534 PubMedCrossRefGoogle Scholar
  13. Chaston T, Chung B, Mascarenhas M et al (2008) Evidence for differential effects of hepcidin in macrophages and intestinal epithelial cells. Gut 57:374–382. doi: 10.1136/gut.2007.131722 PubMedCrossRefGoogle Scholar
  14. De Domenico I, Ward DM, Langelier C et al (2007) The molecular mechanism of hepcidin-mediated ferroportin down-regulation. Mol Biol Cell 18:2569–2578. doi: 10.1091/mbc.E07-01-0060 PubMedCrossRefGoogle Scholar
  15. Drakesmith H, Schimanski LM, Ormerod E et al (2005) Resistance to hepcidin is conferred by hemochromatosis-associated mutations of ferroportin. Blood 106:1092–1097. doi: 10.1182/blood-2005-02-0561 PubMedCrossRefGoogle Scholar
  16. Du X, She E, Gelbart T et al (2008) The serine protease TMPRSS6 is required to sense iron deficiency. Science 320:1088–1092. doi: 10.1126/science.1157121 PubMedCrossRefGoogle Scholar
  17. Feder JN, Penny DM, Irrinki A et al (1998) The hemochromatosis gene product complexes with the transferrin receptor and lowers its affinity for ligand binding. Proc Natl Acad Sci USA 95:1472–1477. doi: 10.1073/pnas.95.4.1472 PubMedCrossRefGoogle Scholar
  18. Feder JN, Gnirke A, Thomas W et al (1996) A novel MHC class I-like gene is mutated in patients with hereditary hemochromatosis. Nat Genet 13:399–408. doi: 10.1038/ng0896-399 PubMedCrossRefGoogle Scholar
  19. Finberg KE, Heeney MM, Campagna DR et al (2008) Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA). Nat Genet 40:569–571. doi: 10.1038/ng.130 PubMedCrossRefGoogle Scholar
  20. Folgueras AR, de Lara FM, Pendas AM et al (2008) Membrane-bound serine protease matriptase–2 (Tmprss6) is an essential regulator of iron homeostasis. Blood 112:2539–2545. doi: 10.1182/blood-2008-04-149773 PubMedCrossRefGoogle Scholar
  21. Frazer DM, Anderson GJ (2003) The orchestration of body iron intake: how and where do enterocytes receive their cues? Blood Cells Mol Dis 30:288–297. doi: 10.1016/S1079-9796(03)00039-1 PubMedCrossRefGoogle Scholar
  22. Frazer DM, Wilkins SJ, Millard KN et al (2004a) Increased hepcidin expression and hypoferraemia associated with an acute phase response are not affected by inactivation of HFE. Br J Haematol 126:434–436. doi: 10.1111/j.1365-2141.2004.05044.x PubMedCrossRefGoogle Scholar
  23. Frazer DM, Wilkins SJ, Becker EM et al (2002) Hepcidin expression inversely correlates with the expression of duodenal iron transporters and iron absorption in rats. Gastroenterology 123:835–844. doi: 10.1053/gast.2002.35353 PubMedCrossRefGoogle Scholar
  24. Frazer DM, Inglis HR, Wilkins SJ et al (2004b) Delayed hepcidin response explains the lag period in iron absorption following a stimulus to increase erythropoiesis. Gut 53:1509–1515. doi: 10.1136/gut.2003.037416 PubMedCrossRefGoogle Scholar
  25. Gardenghi S, Marongiu MF, Ramos P et al (2007) Ineffective erythropoiesis in beta-thalassemia is characterized by increased iron absorption mediated by down-regulation of hepcidin and up-regulation of ferroportin. Blood 109:5027–5035. doi: 10.1182/blood-2006-09-048868 PubMedCrossRefGoogle Scholar
  26. Gehrke SG, Herrmann T, Kulaksiz H et al (2005) Iron stores modulate hepatic hepcidin expression by an HFE-independent pathway. Digestion 72:25–32. doi: 10.1159/000087400 PubMedCrossRefGoogle Scholar
  27. Goswami T, Andrews NC (2006) Hereditary hemochromatosis protein, HFE, interaction with transferrin receptor 2 suggests a molecular mechanism for mammalian iron sensing. J Biol Chem 281:28494–28498. doi: 10.1074/jbc.C600197200 PubMedCrossRefGoogle Scholar
  28. Guillem F, Lawson S, Kannengiesser C et al (2008) Two nonsense mutations in the TMPRSS6 gene in a patient with microcytic anemia and iron deficiency. Blood 112:2089–2091. doi: 10.1182/blood-2008-05-154740 PubMedCrossRefGoogle Scholar
  29. Huang FW, Pinkus JL, Pinkus GS et al (2005) A mouse model of juvenile hemochromatosis. J Clin Invest 115:2187–2191. doi: 10.1172/JCI25049 PubMedCrossRefGoogle Scholar
  30. Huebers HA, Finch CA (1987) The physiology of transferrin and transferrin receptors. Physiol Rev 67:520–582PubMedGoogle Scholar
  31. Johnson MB, Enns CA (2004) Diferric transferrin regulates transferrin receptor 2 protein stability. Blood 104:4287–4293. doi: 10.1182/blood-2004-06-2477 PubMedCrossRefGoogle Scholar
  32. Kanda J, Mizumoto C, Kawabata H et al (2008) Serum hepcidin level and erythropoietic activity after hematopoietic stem cell transplantation. Haematologica 93:1550–1554. doi: 10.3324/haematol.12399 PubMedCrossRefGoogle Scholar
  33. Kemna E, Pickkers P, Nemeth E et al (2005) Time-course analysis of hepcidin, serum iron, and plasma cytokine levels in humans injected with LPS. Blood 106:1864–1866. doi: 10.1182/blood-2005-03-1159 PubMedCrossRefGoogle Scholar
  34. Krause A, Neitz S, Magert HJ et al (2000) LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett 480:147–150. doi: 10.1016/S0014-5793(00)01920-7 PubMedCrossRefGoogle Scholar
  35. Kuninger D, Kuns-Hashimoto R, Kuzmickas R et al (2006) Complex biosynthesis of the muscle-enriched iron regulator RGMc. J Cell Sci 119:3273–3283. doi: 10.1242/jcs.03074 PubMedCrossRefGoogle Scholar
  36. Laftah AH, Ramesh B, Simpson RJ et al (2004) Effect of hepcidin on intestinal iron absorption in mice. Blood 103:3940–3944. doi: 10.1182/blood-2003-03-0953 PubMedCrossRefGoogle Scholar
  37. Lebron JA, Bennett MJ, Vaughn DE et al (1998) Crystal structure of the hemochromatosis protein HFE and characterization of its interaction with transferrin receptor. Cell 93:111–123. doi: 10.1016/S0092-8674(00)81151-4 PubMedCrossRefGoogle Scholar
  38. Lee P, Peng H, Gelbart T et al (2004) The IL-6- and lipopolysaccharide-induced transcription of hepcidin in HFE-, transferrin receptor 2-, and beta 2-microglobulin-deficient hepatocytes. Proc Natl Acad Sci USA 101:9263–9265. doi: 10.1073/pnas.0403108101 PubMedCrossRefGoogle Scholar
  39. Lee P, Peng H, Gelbart T et al (2005) Regulation of hepcidin transcription by interleukin-1 and interleukin-6. Proc Natl Acad Sci USA 102:1906–1910. doi: 10.1073/pnas.0409808102 PubMedCrossRefGoogle Scholar
  40. Lim JE, Jin O, Bennett C et al (2005) A mutation in Sec15l1 causes anemia in hemoglobin deficit (hbd) mice. Nat Genet 37:1270–1273. doi: 10.1038/ng1659 PubMedCrossRefGoogle Scholar
  41. Lin L, Goldberg YP, Ganz T (2005) Competitive regulation of hepcidin mRNA by soluble and cell-associated hemojuvelin. Blood 106:2884–2889. doi: 10.1182/blood-2005-05-1845 PubMedCrossRefGoogle Scholar
  42. Lin L, Nemeth E, Goodnough JB et al (2008) Soluble hemojuvelin is released by proprotein convertase-mediated cleavage at a conserved polybasic RNRR site. Blood Cells Mol Dis 40:122–131. doi: 10.1016/j.bcmd.2007.06.023 PubMedCrossRefGoogle Scholar
  43. Lundby C, Gassmann M, Pilegaard H (2006) Regular endurance training reduces the exercise induced HIF-1alpha and HIF-2alpha mRNA expression in human skeletal muscle in normoxic conditions. Eur J Appl Physiol 96:363–369. doi: 10.1007/s00421-005-0085-5 PubMedCrossRefGoogle Scholar
  44. McMahon S, Grondin F, McDonald PP et al (2005) Hypoxia-enhanced expression of the proprotein convertase furin is mediated by hypoxia-inducible factor-1: impact on the bioactivation of proproteins. J Biol Chem 280:6561–6569. doi: 10.1074/jbc.M413248200 PubMedCrossRefGoogle Scholar
  45. Melis MA, Cau M, Congui R et al (2008) A mutation in the TMPRSS6 gene, encoding a transmembrane serine protease that supresses hepcidin production, in familial iron deficiency anemia refractory to oral iron. Haematologica 93:1473–1479. doi: 10.3324/haematol.13342 PubMedCrossRefGoogle Scholar
  46. Nemeth E, Roetto A, Garozzo G et al (2005) Hepcidin is decreased in TFR2 hemochromatosis. Blood 105:1803–1806. doi: 10.1182/blood-2004-08-3042 PubMedCrossRefGoogle Scholar
  47. Nemeth E, Rivera S, Gabayan V et al (2004a) IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest 113:1271–1276PubMedGoogle Scholar
  48. Nemeth E, Tuttle MS, Powelson J et al (2004b) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306:2090–2093. doi: 10.1126/science.1104742 PubMedCrossRefGoogle Scholar
  49. Nicolas G, Bennoun M, Devaux I et al (2001) Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc Natl Acad Sci USA 98:8780–8785. doi: 10.1073/pnas.151179498 PubMedCrossRefGoogle Scholar
  50. Nicolas G, Viatte L, Lou DQ et al (2003) Constitutive hepcidin expression prevents iron overload in a mouse model of hemochromatosis. Nat Genet 34:97–101. doi: 10.1038/ng1150 PubMedCrossRefGoogle Scholar
  51. Nicolas G, Chauvet C, Viatte L et al (2002a) The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest 110:1037–1044PubMedGoogle Scholar
  52. Nicolas G, Bennoun M, Porteu A et al (2002b) Severe iron deficiency anemia in transgenic mice expressing liver hepcidin. Proc Natl Acad Sci USA 99:4596–4601. doi: 10.1073/pnas.072632499 PubMedCrossRefGoogle Scholar
  53. Pak M, Lopez MA, Gabayan V et al (2006) Suppression of hepcidin during anemia requires erythropoietic activity. Blood 108:3730–3735. doi: 10.1182/blood-2006-06-028787 PubMedCrossRefGoogle Scholar
  54. Papanikolaou G, Tzilianos M, Christakis JI et al (2005) Hepcidin in iron overload disorders. Blood 105:4103–4105. doi: 10.1182/blood-2004-12-4844 PubMedCrossRefGoogle Scholar
  55. Papanikolaou G, Samuels ME, Ludwig EH et al (2004) Mutations in HFE2 cause iron overload in chromosome 1q-linked juvenile hemochromatosis. Nat Genet 36:77–82. doi: 10.1038/ng1274 PubMedCrossRefGoogle Scholar
  56. Park CH, Valore EV, Waring AJ et al (2001) Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 276:7806–7810. doi: 10.1074/jbc.M008922200 PubMedCrossRefGoogle Scholar
  57. Parkkila S, Waheed A, Britton RS et al (1997) Association of the transferrin receptor in human placenta with HFE, the protein defective in hereditary hemochromatosis. Proc Natl Acad Sci USA 94:13198–13202. doi: 10.1073/pnas.94.24.13198 PubMedCrossRefGoogle Scholar
  58. Peyssonnaux C, Zinkernagel AS, Schuepbach RA et al (2007) Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). J Clin Invest 117:1926–1932. doi: 10.1172/JCI31370 PubMedCrossRefGoogle Scholar
  59. Pigeon C, Ilyin G, Courselaud B et al (2001) A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem 276:7811–7819. doi: 10.1074/jbc.M008923200 PubMedCrossRefGoogle Scholar
  60. Rivera S, Liu L, Nemeth E et al (2005a) Hepcidin excess induces the sequestration of iron and exacerbates tumor-associated anemia. Blood 105:1797–1802. doi: 10.1182/blood-2004-08-3375 PubMedCrossRefGoogle Scholar
  61. Rivera S, Nemeth E, Gabayan V et al (2005b) Synthetic hepcidin causes rapid dose-dependent hypoferremia and is concentrated in ferroportin-containing organs. Blood 106:2196–2199. doi: 10.1182/blood-2005-04-1766 PubMedCrossRefGoogle Scholar
  62. Robb A, Wessling-Resnick M (2004) Regulation of transferrin receptor 2 protein levels by transferrin. Blood 104:4294–4299. doi: 10.1182/blood-2004-06-2481 PubMedCrossRefGoogle Scholar
  63. Roetto A, Papanikolaou G, Politou M et al (2003) Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis. Nat Genet 33:21–22. doi: 10.1038/ng1053 PubMedCrossRefGoogle Scholar
  64. Roetto A, Totaro A, Cazzola M et al (1999) Juvenile hemochromatosis locus maps to chromosome 1q. Am J Hum Genet 64:1388–1393. doi: 10.1086/302379 PubMedCrossRefGoogle Scholar
  65. Schmidt PJ, Toran PT, Giannetti AM et al (2008) The transferrin receptor modulates Hfe-dependent regulation of hepcidin expression. Cell Metab 7:205–214. doi: 10.1016/j.cmet.2007.11.016 PubMedCrossRefGoogle Scholar
  66. Silvestri L, Pagani A, Camaschella C (2008) Furin-mediated release of soluble hemojuvelin: a new link between hypoxia and iron homeostasis. Blood 111:924–931. doi: 10.1182/blood-2007-07-100677 PubMedCrossRefGoogle Scholar
  67. Tanno T, Bhanu NV, Oneal PA et al (2007) High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin. Nat Med 13:1096–1101. doi: 10.1038/nm1629 PubMedCrossRefGoogle Scholar
  68. Truksa J, Peng H, Lee P et al (2006) Bone morphogenetic proteins 2, 4, and 9 stimulate murine hepcidin 1 expression independently of Hfe, transferrin receptor 2 (Tfr2), and IL-6. Proc Natl Acad Sci USA 103:10289–10293. doi: 10.1073/pnas.0603124103 PubMedCrossRefGoogle Scholar
  69. Verga Falzacappa MV, Casanovas G, Hentze MW et al (2008) A bone morphogenetic protein (BMP)-responsive element in the hepcidin promoter controls HFE2-mediated hepatic hepcidin expression and its response to IL-6 in cultured cells. J Mol Med 86:531–540. doi: 10.1007/s00109-008-0313-7 PubMedCrossRefGoogle Scholar
  70. Verga Falzacappa MV, Vujic Spasic M, Kessler R et al (2007) STAT3 mediates hepatic hepcidin expression and its inflammatory stimulation. Blood 109:353–358. doi: 10.1182/blood-2006-07-033969 PubMedCrossRefGoogle Scholar
  71. Vokurka M, Krijt J, Sulc K et al (2006) Hepcidin mRNA levels in mouse liver respond to inhibition of erythropoiesis. Physiol Res 55:667–674PubMedGoogle Scholar
  72. Vujic Spasic M, Kiss J, Herrmann T et al (2008) Hfe acts in hepatocytes to prevent hemochromatosis. Cell Metab 7:173–178. doi: 10.1016/j.cmet.2007.11.014 PubMedCrossRefGoogle Scholar
  73. Vujic Spasic M, Kiss J, Herrmann T et al (2007) Physiologic systemic iron metabolism in mice deficient for duodenal Hfe. Blood 109:4511–4517. doi: 10.1182/blood-2006-07-036186 PubMedCrossRefGoogle Scholar
  74. Wang RH, Li C, Xu X et al (2005) A role of SMAD4 in iron metabolism through the positive regulation of hepcidin expression. Cell Metab 2:399–409. doi: 10.1016/j.cmet.2005.10.010 PubMedCrossRefGoogle Scholar
  75. Wilkins SJ, Frazer DM, Millard KN et al (2006) Iron metabolism in the hemoglobin-deficit mouse: correlation of diferric transferrin with hepcidin expression. Blood 107:1659–1664. doi: 10.1182/blood-2005-07-2614 PubMedCrossRefGoogle Scholar
  76. Wrighting DM, Andrews NC (2006) Interleukin–6 induces hepcidin expression through STAT3. Blood 108:3204–3209. doi: 10.1182/blood-2006-06-027631 PubMedCrossRefGoogle Scholar
  77. Xia Y, Babitt JL, Sidis Y et al (2008) Hemojuvelin regulates hepcidin expression via a selective subset of BMP ligands and receptors independently of neogenin. Blood 111:5195–5204. doi: 10.1182/blood-2007-09-111567 PubMedCrossRefGoogle Scholar
  78. Yu PB, Hong CC, Sachidanandan C et al (2008) Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat Chem Biol 4:33–41. doi: 10.1038/nchembio.2007.54 PubMedCrossRefGoogle Scholar
  79. Zhang AS, Sheftel AD, Ponka P (2006) The anemia of “hemoglobin-deficit” (hbd/hbd) mice is caused by a defect in transferrin cycling. Exp Hematol 34:593–598. doi: 10.1016/j.exphem.2006.02.004 PubMedCrossRefGoogle Scholar
  80. Zhang AS, West AP Jr, Wyman AE et al (2005) Interaction of hemojuvelin with neogenin results in iron accumulation in human embryonic kidney 293 cells. J Biol Chem 280:33885–33894. doi: 10.1074/jbc.M506207200 PubMedCrossRefGoogle Scholar
  81. Zhang AS, Anderson SA, Meyers KR et al (2007) Evidence that inhibition of hemojuvelin shedding in response to iron is mediated through neogenin. J Biol Chem 282:12547–12556. doi: 10.1074/jbc.M608788200 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.Iron Metabolism LaboratoryQueensland Institute of Medical Research and the University of Queensland, PO Royal Brisbane HospitalBrisbaneAustralia

Personalised recommendations