, 22:401 | Cite as

Abortiporus biennis tolerance to insoluble metal oxides: oxalate secretion, oxalate oxidase activity, and mycelial morphology

  • Marcin Grąz
  • Anna Jarosz-Wilkołazka
  • Bożena Pawlikowska-Pawlęga


The ability of Abortiporus biennis to tolerate and solubilize toxic metal oxides (Cu2O, Al2O3, ZnO, CuFe2O4Zn, CdO, and MnO2) incorporated into agar media was investigated and the growth rate, oxalic acid secretion, and mycelial morphology were monitored. Among the tested metal oxides, formation of clear zones underneath the mycelium growing on Cu2O- and ZnO-amended plates was observed. ZnO, CdO and Cu2O caused the highest rate of fungal growth inhibition. An increased level of oxalic acid concentration was detected as a response of A. biennis to the presence of Cu2O, MnO2, ZnO and CuFe2O4Zn in growth medium. The oxalate oxidase (OXO) was found to be responsible for oxalic acid degradation in A. biennis cultivated in metal-amended media. An increased level of OXO was observed in media amended with Cu2O, ZnO and MnO2. Confocal microscopy used in this study revealed changes in mycelial morphology which appeared as increased hyphal branching, increased septation and increased spore number.

Key words

Metal oxides Oxalic acid Oxalate oxidase Wood-rotting fungi Confocal microscopy 


  1. Aguilar C, Urzua U, Koenig C, Vicuna R (1999) Oxalate oxidase from Ceriporiopsis subvermispora: biochemical and cytochemical studies. Arch Biochem Biophys 366:275–282. doi: 10.1006/abbi.1999.1216 CrossRefPubMedGoogle Scholar
  2. Baldrian P (2003) Interactions of heavy metals with white-rot fungi. Enzyme Microb Technol 32:78–91. doi: 10.1016/S0141-0229(02)00245-4 CrossRefGoogle Scholar
  3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi: 10.1016/0003-2697(76)90527-3 CrossRefPubMedGoogle Scholar
  4. Chakraborty S, Chakraborty N, Jain D, Salunke DM, Datta A (2002) Active site geometry of oxalate decarboxylase from Flammulina velutipes: role of histidine-coordinated manganese in substrate recognition. Protein Sci 11:2138–2147. doi: 10.1110/ps.0206802 CrossRefPubMedGoogle Scholar
  5. Dashek WV, Micales JA (1997) Assay and purification of enzymes-oxalate decarboxylase. Methods in plant biochemistry and molecular biology, chap. 5. CRC Press, Boca Raton, pp 49–71Google Scholar
  6. Dutton MV, Evans CS (1996) Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Can J Microbiol 42:881–895. doi: 10.1139/m96-114 CrossRefGoogle Scholar
  7. Dutton MV, Kathiara M, Gallagher IM, Evans CS (1994) Purification and characterization of oxalate decarboxylase from Coriolus versicolor. FEMS Microbiol Lett 116:321–326. doi: 10.1111/j.1574-6968.1994.tb06722.x CrossRefGoogle Scholar
  8. Escutia MR, Bowater L, Edwards A, Bottrill AR, Burrell MR, Polanco R et al (2005) Cloning and sequencing of two Ceriporiopsis subvermispora bicupin oxalate oxidase allelic isoforms: implications for the reaction specificity of oxalate oxidases and decarboxylase. Appl Environ Microbiol 71:3608–3616. doi: 10.1128/AEM.71.7.3608-3616.2005 CrossRefPubMedGoogle Scholar
  9. Fomina M, Hillier S, Charnock JM, Melville K, Alexander IJ, Gadd GM (2005a) Role of oxalic acid overexcretion in transformations of toxic metal minerals by Beauveria caledonica. Appl Environ Microbiol 71:371–381CrossRefPubMedGoogle Scholar
  10. Fomina MA, Alexander IJ, Colpaert JV, Gadd GM (2005b) Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biol Biochem 37:851–866CrossRefGoogle Scholar
  11. Fomina M, Charnock JM, Hillier S, Alvarez R, Gadd GM (2007) Fungal transformations of uranium oxides. Environ Microbiol 9:1696–1710. doi: 10.1111/j.1462-2920.2007.01288.x CrossRefPubMedGoogle Scholar
  12. Gadd GM (1993) Interactions of fungi with toxic metals. New Phytol 124:25–60. doi: 10.1111/j.1469-8137.1993.tb03796.x CrossRefGoogle Scholar
  13. Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119. doi: 10.1016/j.geoderma.2004.01.002 CrossRefGoogle Scholar
  14. Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49. doi: 10.1016/j.mycres.2006.12.001 CrossRefPubMedGoogle Scholar
  15. Galhaup C, Haltrich D (2001) Enhanced formation of laccase activity by the white-rot fungus Trametes pubescens in the presence of copper. Appl Microbiol Biotechnol 56:225–232. doi: 10.1007/s002530100636 CrossRefPubMedGoogle Scholar
  16. Green F III, Clausen CA (2003) Copper tolerance of brown-rot fungi: time course of oxalic acid production. Int Biodeterior Biodegradation 51:145–149. doi: 10.1016/S0964-8305(02)00099-9 CrossRefGoogle Scholar
  17. Hegedus DD, Rimmer SR (2005) Sclerotinia sclerotiorum: When “to be or not to be” a pathogen? FEMS Microbiol Lett 251:177–184. doi: 10.1016/j.femsle.2005.07.040 CrossRefPubMedGoogle Scholar
  18. Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microb Technol 30:454–466. doi: 10.1016/S0141-0229(01)00528-2 CrossRefGoogle Scholar
  19. Jarosz-Wilkołazka A, Gadd GM (2003) Oxalate production by wood-rotting fungi growing in toxic metal-amended medium. Chemosphere 52:541–547. doi: 10.1016/S0045-6535(03)00235-2 CrossRefPubMedGoogle Scholar
  20. Jarosz-Wilkołazka A, Grąz M (2006) Organic acids production by white rot Basidiomycetes in the presence of metallic oxides. Can J Microbiol 52:779–785. doi: 10.1139/W06-032 CrossRefPubMedGoogle Scholar
  21. Jarosz-Wilkołazka A, Malarczyk E, Pirszel J, Skowroński T, Leonowicz A (2002) Uptake of cadmium ions in white-rot fungus Trametes versicolor: effect of Cd(II) ions on the activity of laccase. Cell Biol Int 26:605–613. doi: 10.1006/cbir.2002.0887 CrossRefPubMedGoogle Scholar
  22. Jarosz-Wilkołazka A, Grąz M, Braha B, Menge S, Schlosser D, Krauss GJ (2006) Species-specific Cd-stress response in the white rot basidiomycetes Abortiporus biennis and Cerrena unicolor. Biometals 19:39–49. doi: 10.1007/s10534-005-4599-4 CrossRefPubMedGoogle Scholar
  23. Just VJ, Stevenson CEM, Bowater L, Tanner A, Lawson DM, Bornemann S (2004) A closed conformation of Bacillus subtilis oxalate decarboxylase OxdC provides evidence for the true identity of the active site. J Biol Chem 279:19867–19874. doi: 10.1074/jbc.M313820200 CrossRefPubMedGoogle Scholar
  24. Kesarwani M, Azam M, Natarajan K, Mehta A, Datta A (2000) Oxalate decarboxylase from Collybia velutipes. J Biol Chem 275:7230–7238. doi: 10.1074/jbc.275.10.7230 CrossRefPubMedGoogle Scholar
  25. Kurmova E, Dolashki A, Pashova S, Dolasha-Angelova P, Stevanovic S, Hristova R et al (2008) Unusual location and characterization of Cu/Zn-containing superoxide dismutase from filamentous fungus Humicola lutea. Arch Microbiol 189:121–130. doi: 10.1007/s00203-007-0300-3 CrossRefGoogle Scholar
  26. Lafranco L, Balsamo R, Martino E, Perotto S, Bonfante P (2002) Zinc ions alter morphology and chitin deposition in an ericoid fungus. Eur J Histochem 46:341–350Google Scholar
  27. Lindeberg G, Holm G (1952) Occurence of tyrosinase and laccase in fruit bodies of mycelia of some hymenomycetes. Plant Physiol 5:100–114. doi: 10.1111/j.1399-3054.1952.tb08234.x CrossRefGoogle Scholar
  28. Magro P, Marciano P, DiLenna P (1988) Enzymatic oxalate decarboxylation in isolates of Sclerotinia sclerotiorum. FEMS Microbiol Lett 49:49–52. doi: 10.1111/j.1574-6968.1988.tb02680.x CrossRefGoogle Scholar
  29. Mäkelä M, Galkin S, Hatakka A, Lundell T (2002) Production of organic acids and oxalate decarboxylase in lignin-degrading white rot fungi. Enzyme Microb Technol 30:542–549. doi: 10.1016/S0141-0229(02)00012-1 CrossRefGoogle Scholar
  30. Martinez AT, Speranza M, Ruiz-Dueñas FJ, Ferreira P, Camarero S, Guillen F, Martinez MJ, Gutierrez A, del Rio JC (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8:195–204PubMedGoogle Scholar
  31. Micales JA (1995) Oxalate decarboxylase in the brown-rot wood decay fungus Postia placenta. Mater Organismen 29:177–187Google Scholar
  32. Micales JA (1997) Localization and induction of oxalate decarboxylase in the brown-rot wood decay fungus Postia placenta. Int Biodeterior Biodegradation 39:125–132. doi: 10.1016/S0964-8305(97)00009-7 CrossRefGoogle Scholar
  33. Palmieri G, Giardina P, Bianco C, Fontanella B, Sannia G (2000) Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Appl Environ Microbiol 66:920–924. doi: 10.1128/AEM.66.3.920-924.2000 CrossRefPubMedGoogle Scholar
  34. Requena L, Bornemann S (1999) Barley (Hordeum vulgare) oxalate oxidase is a manganese-containing enzyme. Biochem J 343:185–190. doi: 10.1042/0264-6021:3430185 CrossRefPubMedGoogle Scholar
  35. Sayer JA, Raggett SL, Gadd GM (1995) Solubilization of insoluble metal compounds by soil fungi: development of screening method for solubilizing ability and metal tolerance. Mycol Res 99:987–993CrossRefGoogle Scholar
  36. Schlosser D, Höfer C (2002) Laccase-catalyzed oxidation of Mn2+ in presence of natural Mn3+ chelators as a novel source of H2O2 and its impact on manganese peroxidase. Appl Environ Microbiol 68:3514–3521. doi: 10.1128/AEM.68.7.3514-3521.2002 CrossRefPubMedGoogle Scholar
  37. Shah V, Nerud F (2002) Lignin degrading system of white-rot fungi and its exploitation for dye decolorization. Can J Microbiol 48:857–870. doi: 10.1139/w02-090 CrossRefPubMedGoogle Scholar
  38. Shimada M, Akamatsu Y, Tokimatsu T, Mii K, Hattori T (1997) Possible biochemical roles of oxalic acid as a low molecular weight compound involved in brown-rot and white-rot wood decays. J Biotechnol 53:103–113. doi: 10.1016/S0168-1656(97)01679-9 CrossRefGoogle Scholar
  39. Singhal V, Rathore VS (2001) Effects of Zn2+ and Cu2+ on growth, lignin degradation and ligninolytic enzymes in Phanerochaete chrysosporium. World J Microbiol Biotechnol 17:235–240. doi: 10.1023/A:1016617025769 CrossRefGoogle Scholar
  40. Svedruzic D, Jonsson S, Toyota CG, Reinhardt LA, Ricagno S, Lindvist Y et al (2005) The enzymes of oxalate metabolism: unexpected structures and mechanism. Arch Biochem Biophys 433:176–192. doi: 10.1016/ CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Marcin Grąz
    • 1
  • Anna Jarosz-Wilkołazka
    • 1
  • Bożena Pawlikowska-Pawlęga
    • 2
  1. 1.Department of BiochemistryMaria Curie-Sklodowska UniversityLublinPoland
  2. 2.Department of Comparative Anatomy and AnthropologyMaria-Curie Sklodowska UniversityLublinPoland

Personalised recommendations