Advertisement

BioMetals

, 21:675 | Cite as

Binding and photocleavage of DNA by mixed ligand Co(III) and Ni(II) complexes of thiophene[2, 3-b] quinoline and phenanthrolie/bipyridine

  • Mustur C. Prabahkara
  • Halehatty S. Bhojya Naik
Article

Abstract

In order to systematically perform an experimental and theoretical study on DNA binding and photocleavage properties of transition metal complexes of the type [M(L)2(L1)](PF6)n · xH2O (where M = Co(III) or Ni(II), L = 1,10-phenanthroline or 2.2′ bipryidine, L1 = Thiophene [2,3-b] quinoline (qt), n = 3 or 2 and x = 5 or 2) have been synthesized and characterized by elemental analysis, IR, 1H NMR, UV and magnetic susceptibility data. The DNA-binding properties of these complexes have been investigated with UV-Vis, viscosity measurements, thermal denaturation and cyclic voltametric studies. It is experimentally found that all the complexes are bound to DNA via intercalation in the order [Co(bpy)2(qt)](PF6)3 > [Co(phen)2(qt)](PF6)3 > [Ni(phen)2(qt)](PF6)2 > [Ni(bpy)2(qt)](PF6)2. The photocleavage studies with pUC19 DNA shows that all these complexes promoted the conversion of SC form to NC form in absence of ‘inhibitors’.

Keywords

Mixed ligand complexes Phenanthroline Bipyridine DNA binding Photocleavage 

Abbrevations

SC

Super coiled

NC

Nicked circular

DNA

Deoxyribose nucleic acid

pUC

plasmid University of California

Notes

Acknowledgements

One of the author Prabhakara M.C. wish to thank Kuvempu University for providing Senior Research Fellowship and the Director, SIFC, IISc. Bangalore for Spectral data.

References

  1. Arounaguiri S, Maiya BG (1996) Dihydrophenazine complexes of cobalt(III) and Ni(II): DNA binding and photocleavage studies. Inorg Chem 35:4267–4270PubMedCrossRefGoogle Scholar
  2. Barton JK (1986) Metal ions in biological systems: interaction of metal ions with nucleotides, nucleic acids and nucleosides. Science 233:727–734PubMedCrossRefGoogle Scholar
  3. Barton JK, Lippard SJ (1980) Metal ions in biology. In: Siro TG (ed) Wiley, New York, p 31Google Scholar
  4. Banerjee AR, Jaeger JA, Turner DH (1993) Thermal unfolding of a group I ribozome: the low-temperature transition is primarily disruption of tertiary structure. Biochemistry 32:153–163PubMedCrossRefGoogle Scholar
  5. Blower PJ, Dilworth JR, Maurer RI, Millen GD, Reynolds CA, Zheng Y (2001) Towards new transition metal-based hypoxic selective agents for therapy and imaging. J Inorg Biochem 85:15–22PubMedCrossRefGoogle Scholar
  6. Burrows CJ, Rikita SE (1994) Recognition of guanine structure in nucleic acids by nickel complexes. Acc Chem Res 27:295–301CrossRefGoogle Scholar
  7. Erkkila KE, Odom DT, Barton JK (1999) Recognition and reaction of metallointercalators with DNA. Chem Rev 99:2777–2795PubMedCrossRefGoogle Scholar
  8. Friedman AE, Chambron JC, Sauvage JP, Turro NJ, Barton JK (1990) A molecular light switch for DNA: Ru(bpy)2(dppz)]2+. J Am Chem Soc 112:4960–4962CrossRefGoogle Scholar
  9. Frodl A, Herebian D, Sheldrick WS (2002) Coligand tuning of the DNA binding properties of bioorganometallic (η8-arene) ruthenium(II) complexes of the type [(η8–arene)Ru(amino acid)(dppz)]n+ (dppz = dipyrido[3,2-a: 2′,3′-C] phenazine), n = 1–3. J Am Chem Soc Dalt Trans 3664Google Scholar
  10. Gupta T, Patra AK, Dhar S, Nethaji M, Chakravarthy AR (2005) Effect of copper–sulphur bond on the DNA photo-cleavage activity of 2-(methylthio)ethylpyridine-2-carbaldimine copper (II) complexes. J Chem Sci 117(2):123–132Google Scholar
  11. Harris CM, McKenzie ED (1967) Nitrogenous chelate complexes of transition metals-III* bis-chelate copmlexes of nickel(II) with 1.10-phenanthroline, 2, 2-bipyridal and analogus ligands. J Inorg Nucl Chem 29:1047–1068CrossRefGoogle Scholar
  12. Hartshorn RM, Barton JK (1992) Novel dipyridophenazine complexes of ruthenium(II): exploring luminecent reporters of DNA. J Am Chem Soc 114:5919–5325CrossRefGoogle Scholar
  13. Hiort CH, Lincoln P, Norden B (1993) DNA binding of DELTA- and LAMBDA-[Ru(phen)2DPPZ]2+. J Am Chem Soc 115:3448–3454CrossRefGoogle Scholar
  14. Kuroda T, Suzuki F, Tamura T, Ohomori K, Hosie (1992) A novel synthesis of potent antiinflamatory activity of 4-hydroxy–2(iH)-oxo-1phrnyl-1.8-naphthyridine-3-carboxamides. J Med Chem 35:1130–1135Google Scholar
  15. Norden B, Lincoln P, Akerman B, Tuite E (1996) Metal ions in biological systems. In: Sigel A, Sigel H (eds) DNA interaction with substitution-inert transition metal ions complexes, Marcel Dekker, New York, vol 33. pp 147–168Google Scholar
  16. Pebg B, Chao H, Sun B, Gao F, Ji LN (2007) Synthesis, DNA-binding and photocleavage studies of cobalt(III) complexes [Co(bpy)2(dpta)+3 and [Co(bpy)2(amtp)+3. J Inorg Biochem 32:271Google Scholar
  17. Prabhakara MC, Basavaraju B, Bhojya Naik HS (2007) Co(III) and Ni(II) complexes containing bioactive ligands: synthesis, DNA binding, and photocleavage studies. Bioinorg Chem and Appln 2007:1–7Google Scholar
  18. Pyle AM, Barton JK (1990) Probing nucleic acids with transition metal complexes. Prog Inorg Chem 38:413–475CrossRefGoogle Scholar
  19. Pyle AM, Rehmann JP, Meshoyrer R, Kumar CV, Turro NJ, Barton JK (1989) Mixed ligand complexes of ruthenium(II): factors governing binding to DNA. J Am Chem Soc 111:3051–3058CrossRefGoogle Scholar
  20. Ramakrishnan S, Palaniandavar M (2005) Mixed-ligand copper(II) complexes of dipicolylamine and 1, 10-phenanthroline: the role of diimines in the interaction of the complexes with DNA. J Chem Sci 117:179–186Google Scholar
  21. Ravikumar Naik TR, Bhojya Naik HS, Raghavendra M, Gopalakrishna naik SR (2006) Synthesis of thieno[2,3-b] benzo[1–8] naphthyridine-2-carboxylic acids under microwave irradiation and interaction with DNA studies. ARKIVOC XV:84–94Google Scholar
  22. Sardesai NY, Zimmermann K, Barton JK (1994) DNA recognition by peptide complexes of Rhodium(III): example of a Glutamate switch. J Am Chem Soc 116:7502–7508CrossRefGoogle Scholar
  23. Sasmal PK, Patra AK, Nethaji M, Akhil R, Chakravarty AR (2007) DNA cleavage by new oxovanadium(IV) complexes of N-salicylidene r-amino acids and phenanthroline bases in the photodynamic therapy window. Inorg Chem 46:11112Google Scholar
  24. Sathyanarayana S, Daborusak JC, Chaires JB (1992) Neither DELTA––nor LAMBDA- tris(phenanthroline)ruthenium(II) binds to DNA by classical intercalation. Biochemistry 31:9313–9324Google Scholar
  25. Sathyanarayana S, Daborusak JC, Chaires JB (1993) Tris(phenanthroline) ruthenium(II) enantiomer interaction with DNA: mode and specificity of binding. Biochemistry 32:2573–2584CrossRefGoogle Scholar
  26. Sessler JL, Hemmi G, Mody TD, Murai T, Burrel A, Young SW (1994) Texaphyrins : synthesis and applications. Acc Chem Res 27:43–50CrossRefGoogle Scholar
  27. Sigman DS, Landgraf R, Perrin DM, Pearson L (1996) Metal ions in biological systems. In: Sigel A, Sigel H (eds) Nucleic acid chemistry of cuprous complexes of 1,10-phenanthroline and derivatives, vol 33. Marcel Dekker, New York, pp 485–514Google Scholar
  28. Sitlani A, Long EC, Pyle AM, Barton JK (1992) DNA photocleavage by phenanthrenequinone diimine complexes of rhodium(III): shape-selective recognition and reaction. J Am Chem Soc 114:2303–2312CrossRefGoogle Scholar
  29. Staniewicz RJ, Hendricker DG (1977) Electrochemical and spectral investigations of ruthenium(II) complexes of 1.8-naphthyridine and its 2-methyl and 2.7-dimethyl derivatives. J Am Chem Soc 99:6581–6587CrossRefGoogle Scholar
  30. Sugiyama M (1994) Role of cellular antioxidants in metal-induced damages. Cell Biol Toxicol 10:1–22PubMedCrossRefGoogle Scholar
  31. Uma V, Kanthimathi M, Weyhermuller T, Nair BU (2005) Oxidative DNA cleavage mediated by a new copper(II) terpyridine complex: crystal structure and DNA binding studies. J Inorg Biochem 99:2299–2307PubMedCrossRefGoogle Scholar
  32. Vaidyanathan VG, Nair BU (2003) Synthesis, charecterization and binding studies of chromium(III) complex containing an intercalating ligand with DNA. J Inorg Biochem 95:334–342PubMedCrossRefGoogle Scholar
  33. Vlcek AA (1967) Preparation of Co(dipy)2X2 + complexes (X=Cl, Br, I, NO2 ) by controlled oxidative processes. Inorg Chem 6:1425–1429CrossRefGoogle Scholar
  34. Wolf A, Shimer GH, Meeham T (1987) Polycyclic aromatic hydrocarbons physically intercalate in to duplex region of denatured DNA. Biochemistry 26:6392CrossRefGoogle Scholar
  35. Yang DZ, Strode JT, Spielmann Wang AJ, Burake TG (1998) DNA interaction of two clinical camptothecin drugs stabilize their active lactone forms. J Am Chem Soc 120:2979–2980CrossRefGoogle Scholar
  36. Zhang QL, Liu JG, Chao H, Zue GQ, Ji LN (2001) DNA binding and photocleavage studies of cobalt(III) polypyridal complexes: {Co(phen)2IP]3+ and [Co(phen)2PIP]3+. J Inorg Biochem 83:49–55PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Mustur C. Prabahkara
    • 1
  • Halehatty S. Bhojya Naik
    • 1
  1. 1.Department of P.G. Studies and Research in Industrial Chemistry, School of Chemical SciencesKuvempu UniversityShimogaIndia

Personalised recommendations