Skip to main content

Advertisement

Log in

Iron acquisition mechanisms of the Burkholderia cepacia complex

  • Published:
BioMetals Aims and scope Submit manuscript

An Erratum to this article was published on 12 June 2007

Abstract

The Burkholderia cepacia complex (Bcc) is comprised of at least 10 closely related species of Gram-negative proteobacteria that are associated with infections in certain groups of immunocompromised individuals, particularly those with cystic fibrosis. Infections in humans tend to occur in the lungs, which present an iron-restricted environment to a prospective pathogen, and accordingly members of the Bcc appear to possess efficient mechanisms for iron capture. These bacteria specify up to four different types of siderophore (ornibactin, pyochelin, cepabactin and cepaciachelin) that employ the full repertoire of iron-binding groups present in most naturally occurring siderophores. Members of the Bcc are also capable of utilising some exogenous siderophores that they are not able to synthesise. In addition to siderophore-mediated mechanisms of iron uptake, the Bcc possess mechanisms for acquiring iron from haem and from ferritin. The Bcc therefore appear to be well-equipped for life in an iron-poor environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adilakshmi T, Ayling PD, Ratledge C (2000) Mutational analysis of a role for salicylic acid in iron metabolism of Mycobacterium smegmatis. J Bacteriol 182:264–271

    Article  PubMed  CAS  Google Scholar 

  • Agnoli K, Lowe CA, Farmer KL, Husnain I, Thomas MS (2006) The ornibactin biosynthesis and transport genes of Burkholderia cenocepacia are regulated by an ECF σ factor which is a part of the Fur regulon. J Bacteriol 188:3631–3644

    Article  PubMed  CAS  Google Scholar 

  • Alice AF, Lopez CS, Lowe CA, Ledesma MA, Crosa JH (2006) Genetic and transcriptional analysis of the siderophore malleobactin biosynthesis and transport genes in the human pathogen Burkholderia pseudomallei K96243. J Bacteriol 188:1551–1566

    Article  PubMed  CAS  Google Scholar 

  • Alisi C, Lasinio GJ, Dalmastri C, et al (2005) Metabolic profiling of Burkholderia cenocepacia, Burkholderia ambifaria, and Burkholderia pyrrocinia isolates from maize rhizosphere. Microb Ecol 50:385–395

    Article  PubMed  CAS  Google Scholar 

  • Andrews SC, Robinson AK, Rodriguez-Quinones F (2003) Bacterial iron homeostasis. FEMS Microbiol Lett 27:215–237

    Article  CAS  Google Scholar 

  • Ankenbauer RG (1992) Cloning of the outer membrane high-affinity Fe(III)–pyochelin receptor of Pseudomonas aeruginosa. J Bacteriol 174:4401–4409

    PubMed  CAS  Google Scholar 

  • Ankenbauer RG, Cox CD (1988) Isolation and characterisation of Pseudomonas aeruginosa mutants requiring salicylic acid for pyochelin biosynthesis. J Bacteriol 170:5364–5367

    PubMed  CAS  Google Scholar 

  • Ankenbauer RG, Quan HN (1994) FptA, the Fe(III)–pyochelin receptor of Pseudomonas aeruginosa: a phenolate siderophore receptor homologous to hydroxamate siderophore receptors. J Bacteriol 176:307–319

    PubMed  CAS  Google Scholar 

  • Ankenbauer RG, Sriyosachati S, Cox CD (1985) Effects of siderophores on the growth of Pseudomonas aeruginosa in human serum and transferrin. Infect Immun 49:312–140

    Google Scholar 

  • Ankenbauer RG, Toyokuni T, Staley A, Rinehart KL Jr, Cox CD (1988) Synthesis and biological activity of pyochelin, a siderophore of Pseudomonas aeruginosa. J Bacteriol 170:5344–5351

    PubMed  CAS  Google Scholar 

  • Anthoni U, Christophersen C, Nielsen PH, Gram L, Petersen BO (1995) Pseudomonine: an isoxazolidone with siderophore activity from Pseudomonas fluorescens AH2 isolated from Lake Victorian Nile perch. J Nat Prod 58:1786–1789

    Article  CAS  Google Scholar 

  • Audenaert K, Pattery T, Cornelis P, Hofte M (2002) Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Mol Plant Microbe Interact 15:1147–1156

    Article  PubMed  CAS  Google Scholar 

  • Baldwin A, Mahenthiralingam E, Thickett KM, et al (2005) Multilocus sequence typing scheme that provides both species and strain differentiation for the Burkholderia cepacia complex. J Clin Microbiol 43:4665–4673

    Article  PubMed  CAS  Google Scholar 

  • Barelmann I, Meyer J-M, Taraz K, Budzikiewicz H (1996) Cepaciachelin, a new catecholate siderophore from Burkholderia (Pseudomonas) cepacia. Z Naturforsch 51c:627–630

    Google Scholar 

  • Barker WR, Callaghan C, Hill L, et al (1979) G1549, a new cyclic hydroxamic acid antibiotic, isolated from culture broth of Pseudomonas alcaligenes. J Antibiot 32:1096–1103

    PubMed  CAS  Google Scholar 

  • Baysse C, De Vos D, Naudet Y, et al (2000) Vanadium interferes with siderophore-mediated iron uptake in Pseudomonas aeruginosa. Microbiology 146:2425–2434

    PubMed  CAS  Google Scholar 

  • Berg G, Eberl L, Hartmann A (2005) The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol 7:1673–1685

    Article  PubMed  CAS  Google Scholar 

  • Braun V, Mahren S (2005) Transmembrane transcriptional control (surface signalling) of the Escherichia coli Fec type. FEMS Microbiol Rev 29:673–684

    Article  PubMed  CAS  Google Scholar 

  • Bukovits GJ, Mohr N, Budzkiewicz H, Korth H, Pulverer G (1982) 2-Phenyl thiazole derivatives from Pseudomonas cepacia. Z Naturforsch 37b:877–880

    CAS  Google Scholar 

  • Carmi R, Carmeli S, Levy E, Gough FJ (1994) (+)-(S)-Dihydroaeruginoic acid, an inhibitor of Septoria tritici and other phytopathogenic fungi and bacteria, produced by Pseudomonas fluorescens. J Nat Prod 57:1200–1205

    Article  PubMed  CAS  Google Scholar 

  • Castignetti D (1997) Probing of Pseudomonas aeruginosa, Pseudomonas aureofaciens, Burkholderia (Pseudomonas) cepacia, Pseudomonas fluorescens, and Pseudomonas putida with the ferripyochelin receptor A gene and the synthesis of pyochelin in Pseudomonas aureofaciens, Pseudomonas fluorescens, and Pseudomonas putida. Curr Microbiol 34:250–257

    Article  PubMed  CAS  Google Scholar 

  • Chipperfield JR, Ratledge C (2000) Salicylic acid is not a bacterial siderophore: a theoretical study. BioMetals 13:165–168

    Article  PubMed  CAS  Google Scholar 

  • Cobessi D, Celia H, Pattus F (2005) Crystal structure at high resolution of ferric–pyochelin and its membrane receptor FptA from Pseudomonas aeruginosa. J Mol Biol 352:893–904

    Article  PubMed  CAS  Google Scholar 

  • Coenye T, Vandamme P (2003) Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol 5:719–729

    Article  PubMed  CAS  Google Scholar 

  • Cornish AS, Page WJ (1995) Production of the tricatecholate siderophore protochelin by Azotobacter vinelandii. BioMetals 8:332–338

    Article  CAS  Google Scholar 

  • Cox CD (1980) Iron uptake with ferripyochelin and ferric citrate by Pseudomonas aeruginosa. J Bacteriol 142:581–587

    PubMed  CAS  Google Scholar 

  • Cox CD, Graham R (1979) Isolation of an iron-binding compound from Pseudomonas aeruginosa. J Bacteriol 137:357–364

    PubMed  CAS  Google Scholar 

  • Cox CD, Rinehart KL, Moore ML, Cook JC (1981) Pyochelin: novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa. Proc Natl Acad Sci USA 78:4256–4260

    Article  PubMed  CAS  Google Scholar 

  • Cuppels DA, Stipanovic RD, Stoessl A, Stothers JB (1987) The constitution and properties of a pyochelin–zinc complex. Can J Chem 65:2126–2130

    Article  CAS  Google Scholar 

  • Darling P, Chan M, Cox AD, Sokol PA (1998) Siderophore production by cystic fibrosis isolates of Burkholderia cepacia. Infect Immun 66:874–877

    PubMed  CAS  Google Scholar 

  • De Voss JJ, Rutter K, Schroeder BG, Su H, Zhu Y-Q, Barry CE (2000) The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc Natl Acad Sci USA 97:1252–1257

    Article  PubMed  Google Scholar 

  • Farmer KL, Thomas MS (2004) Isolation and characterization of Burkholderia cenocepacia mutants deficient in pyochelin production: pyochelin biosynthesis is sensitive to sulphur availability. J Bacteriol 186:270–277

    Article  PubMed  CAS  Google Scholar 

  • Gaille C, Kast P, Haas D (2002) Salicylate biosynthesis in Pseudomonas aeruginosa. J Biol Chem 277:21768–21775

    Article  PubMed  CAS  Google Scholar 

  • Gaille C, Reimmann C, Haas D (2003) Isochorismate synthase (PchA), the first and rate-limiting enzyme in salicylate biosynthesis of Pseudomonas aeruginosa. J Biol Chem 278:16893–16898

    Article  PubMed  CAS  Google Scholar 

  • Gehring AM, DeMoll E, Fetherston D, et al (1998) Iron acquisition in plaque: modular logic in enzymatic biogenesis of yersiniabactin by Yersinia pestis. Chem Biol 5:573–586

    Article  PubMed  CAS  Google Scholar 

  • Genco CA, Dixon DW (2001) Emerging strategies in microbial haem capture. Mol Microbiol 39:1–11

    Article  PubMed  CAS  Google Scholar 

  • Gensberg K, Hughes K, Smith AW (1992) Siderophore-specific induction of iron uptake in Pseudomonas aeruginosa. J Gen Microbiol 138:2381–2387

    PubMed  CAS  Google Scholar 

  • Govan JRW, Deretic V (1996) Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60:539–574

    PubMed  CAS  Google Scholar 

  • Hausinger RP (2004) Fe(II)/α-ketoglutarate-dependent hydroxylases and related enzymes. Crit Rev Biochem Mol Biol 39:21–68

    Article  PubMed  CAS  Google Scholar 

  • Heinrichs DE, Poole K (1993) Cloning and sequence analysis of a gene (pchR) encoding an AraC family activator of pyochelin and ferripyochelin receptor synthesis in Pseudomonas aeruginosa. J Bacteriol 175:5882–5889

    PubMed  CAS  Google Scholar 

  • Heinrichs DE, Poole K (1996) PchR, a regulator of ferripyochelin receptor gene (fptA) expression in Pseudomonas aeruginosa, functions both as an activator and a repressor. J Bacteriol 178:2586–2592

    PubMed  CAS  Google Scholar 

  • Heinrichs DE, Young L, Poole K (1991) Pyochelin-mediated transport in Pseudomonas aeruginosa: involvement of a high-molecular-mass outer membrane protein. Infect Immun 59:3680–3684

    PubMed  CAS  Google Scholar 

  • Hoegy F, Celia H, Mislin GL, Vincent M, Gallay J, Schalk IJ (2005) Binding of iron-free siderophore, a common feature of siderophore outer membrane transporters of Escherichia coli and Pseudomonas aeruginosa. J Biol Chem 280:20222–20230

    Article  PubMed  CAS  Google Scholar 

  • Holden MT, Titball RW, Peacock SJ, et al (2004) Genome plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc Natl Acad Sci USA 101:14240–14245

    Article  PubMed  CAS  Google Scholar 

  • Huber B, Feldmann F, Kothe M, et al (2004) Identification of a novel virulence factor in Burkholderia cenocepacia H111 required for efficient slow killing of Caenorhabditis elegans. Infect Immun 72:7220–7230

    Article  PubMed  CAS  Google Scholar 

  • Ino A, Murabayashi A (2001) Synthetic studies of thiazoline and thiazolidine-containing natural products. Part 3: total synthesis and absolute configuration of the siderophore yersiniabactin. Tetrahedron 57:1897–1902

    Article  CAS  Google Scholar 

  • Isles A, Maclusky I, Corey M, et al (1984) Pseudomonas cepacia infections in cystic fibrosis: an emerging problem. J Pediatr 104:206–210

    Article  PubMed  CAS  Google Scholar 

  • Itoh J, Miyadoh S, Takahasi S, Amano S, Ezaki N, Yamada Y (1979) Studies on antibiotics BN-227 and BN-227-F, new antibiotics. I. Taxonomy, isolation and characterization. J Antibiot 33:1089–1095

    Google Scholar 

  • Itoh J, Amano S, Ogawa Y, Kodama Y, Ezaki N, Yamada Y (1980) Studies on antibiotics BN-227 and BN-227-F, new antibiotics. II. Chemical structure of antibiotics BN-227 and BN-227-F. J Antibiot 33:377–382

    PubMed  CAS  Google Scholar 

  • Keller-Schierlein W, Hagmann L, Zahner H, Huhn W (1988) Maduraferrin, a novel siderophore from Actinomadura madurae. Helv Chim Acta 71:1528–1534

    Article  CAS  Google Scholar 

  • Kerbarh O, Ciulli A, Howard NI, Abell C (2005) Salicylate biosynthesis: purification, and characterization of Irp9, a bifunctional salicylate synthase from Yersinia enterocolitica. J Bacteriol 187:5061–5066

    Article  PubMed  CAS  Google Scholar 

  • Klumpp C, Burger A, Mislin GL, Abdallah MA (2005) From a total synthesis of cepabactin and its 3:1 ferric complex to the isolation of a 1:1:1 mixed complex between iron (III), cepabactin and pyochelin. Bioorg Med Chem Lett 15:1721–1724

    Article  PubMed  CAS  Google Scholar 

  • Koebnik R (2005) TonB-dependent trans-envelope signalling: the exception or the rule. Trends Microbiol 13:343–347

    Article  PubMed  CAS  Google Scholar 

  • Koedam N, Wittouck E, Gaballa A, Gillis A, Hofte M, Cornelis P (1994) Detection and differentiation of microbial siderophores by isoelectric focusing and chrome azurol S overlay. BioMetals 7:287–291

    Article  PubMed  CAS  Google Scholar 

  • Lamont IL, Beare PA, Ochsner U, Vasil AI, Vasil ML (2002) Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 99:7072–7077

    Article  PubMed  CAS  Google Scholar 

  • Leoni L, Orsi N, de Lorenzo V, Visca P (2000) Functional analysis of PvdS, an iron starvation sigma factor of Pseudomonas aeruginosa. J Bacteriol 182:1481–1491

    Article  PubMed  CAS  Google Scholar 

  • Lessie TG, Hendrickson W, Manning BD, Devereux R (1996) Genomic complexity and plasticity of Burkholderia cepacia. FEMS Microbiol Lett 144:117–128

    Article  PubMed  CAS  Google Scholar 

  • Lewenza S, Sokol PA (2001) Regulation of ornibactin biosynthesis and N-acyl-l-homoserine lactone production by CepR in Burkholderia cepacia. J Bacteriol 183:2212–2218

    Article  PubMed  CAS  Google Scholar 

  • Lewenza S, Conway B, Greenberg EP, Sokol PA (1999) Quorum sensing in Burkholderia cepacia: identification if the LuxRI homologs CepRI. J Bacteriol 181:748–756

    PubMed  CAS  Google Scholar 

  • LiPuma JJ (1998) Burkholderia cepacia: management issues and new insights. Clin Chest Med 19:473–486

    Article  PubMed  CAS  Google Scholar 

  • LiPuma JJ, Spilker T, Gill LH, Campbell PW, Liu L, Mahenthiralingam E (2001) Disproportionate distribution of Burkholderia cepacia complex species and transmissibility markers in cystic fibrosis. Am J Respir Crit Care Med 164:92–96

    PubMed  CAS  Google Scholar 

  • Lowe CA, Asghar AH, Shalom G, Shaw JG, Thomas MS (2001) The Burkholderia cepacia fur gene: co-localisation with omlA and absence of regulation by iron. Microbiology 147:1303–1314

    PubMed  CAS  Google Scholar 

  • Mahenthiralingam E, Baldwin A, Vandamme P (2002) Burkholderia cepacia complex infection in patients with cystic fibrosis. J Med Microbiol 51:533–538

    PubMed  Google Scholar 

  • Mahenthiralingam E, Coenye T, Chung JW, Speert DP, Govan JRW, Taylor P, Vandamme P (2000) Diagnostically and experimentally useful panel of strains from the Burkholderia cepacia complex. J Clin Microbiol 38:910–913

    CAS  Google Scholar 

  • Mahenthiralingam E, Urban TA, Goldberg JB (2005) The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol 3:144–156

    Article  PubMed  CAS  Google Scholar 

  • Malott RJ, Baldwin A, Mahenthiralingam E, Sokol PA (2005) Characterization of the cciIR quorum-sensing system in Burkholderia cenocepacia. Infect Immun 73:4982–4992

    Article  PubMed  CAS  Google Scholar 

  • Marshall BJ, Ratledge C (1971) Conversion of chorismic acid and isochorismic acid to salicylic acid by cell-free extracts of Mycobacterium smegmatis. Biochem Biophys Acta 230:643–645

    PubMed  CAS  Google Scholar 

  • Marshall BJ, Ratledge C (1972) Salicylic acid biosynthesis and its control in Mycobacterium smegmatis. Biochim Biophys Acta 264:106–116

    PubMed  CAS  Google Scholar 

  • Martell AE, Smith RM (1977) Other organic ligands. In: Martell AE, Smith RM (eds) Critical stability constants, vol 3. Plenum, New York, pp 181–201

    Google Scholar 

  • Martin RG, Rosner JL (2001) The AraC transcriptional activators. Curr Opin Microbiol 4:132–137

    Article  PubMed  CAS  Google Scholar 

  • McMorran BJ, Merriman ME, Rombel IT, Lamont IL (1996) Characterisation of the pvdE gene which is required for pyoverdine synthesis in Pseudomonas aeruginosa. Gene 176:55–59

    Article  PubMed  CAS  Google Scholar 

  • McMorran BJ, Kumara HMCS, Lamont IL (2001) Involvement of a transformylase enzyme in siderophore synthesis in Pseudomonas aeruginosa. Microbiology 147:1517–1524

    PubMed  CAS  Google Scholar 

  • Mercado-Blanco J, van der Drift KMGM, Olsson PE, Thomas-Oates JE, van Loon LC, Bakker PAHM (2001) Analysis of the pmsCEAB gene cluster involved in the biosynthesis of salicylic acid an the siderophore pseudomonine in the biocontrol strain Pseudomonas fluorescens WCS374. J Bacteriol 183:1909–1920

    Article  PubMed  CAS  Google Scholar 

  • Meyer J-M (1992) Exogenous siderophore-mediated iron uptake in Pseudomonas aeruginosa: possible involvement of porin OprF in iron metabolism. J Gen Microbiol 138:951–958

    PubMed  CAS  Google Scholar 

  • Meyer J-M (2000) Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent pseudomonas species. Arch Microbiol 174:135–142

    Article  PubMed  CAS  Google Scholar 

  • Meyer J-M, Hohnadel D, Halle F (1989) Cepabactin from Pseudomonas cepacia, a new type of siderophore. J Gen Microbiol 135:1479–1487

    PubMed  CAS  Google Scholar 

  • Meyer J-M, Azelvandre P, Georges C (1992) Iron metabolism in Pseudomonas: salicylic acid, a siderophore of Pseudomonas fluorescens CHA0. BioFactors 4:23–27

    PubMed  CAS  Google Scholar 

  • Meyer J-M, Van VT, Stintzi A, Berge O, Winkelmann G (1995) Ornibactin production and transport properties in strains of Burkholderia vietnamiensis and Burkholderia cepacia (formerly Pseudomonas cepacia). BioMetals 8:309–317

    Article  PubMed  CAS  Google Scholar 

  • Michel L, Gonzalez N, Jagdeep S, Nguyen-Ngoc T, Reimmann C (2005) PchR-box recognition by the AraC-type regulator PchR of Pseudomonas aeruginosa requires the siderophore pyochelin as an effector. Mol Microbiol 58:495–509

    Article  PubMed  CAS  Google Scholar 

  • Mislin GLA, Hoegy F, Cobessi D, Poole K, Rognan D, Schalk IJ (2006) Binding properties of pyochelin and structurally related molecules to FptA of Pseudomonas aeruginosa. J Mol Biol 357:1437–1448

    Article  PubMed  CAS  Google Scholar 

  • Muller K, Matzanke BF, Schunemann V, Trautwein AX, Hantke K (1998) FhuF, an iron-regulated protein of Escherichia coli with a new type of [Fe-S] center. Eur J Biochem 258:1001–1008

    Article  PubMed  CAS  Google Scholar 

  • Ochsner U, Vasil A, Vasil ML (1995) Role of the ferric uptake regulator of Pseudomonas aeruginosa in the regulation of siderophores and exotoxin A expression: purification and activity on iron-regulated promoters. J Bacteriol 177:7194–7201

    PubMed  CAS  Google Scholar 

  • Ochsner U, Wilderman PJ, Vasil AI, Vasil ML (2002) GeneChip® expression analysis of the iron starvation response in Pseudomonas aeruginosa: identification of novel pyoverdine biosynthesis genes. Mol Microbiol 45:1277–1287

    Article  PubMed  CAS  Google Scholar 

  • O’Cuiv P, Clarke P, Lynch D, O’Connell M (2004) Identification of rhtX and fptX, novel genes encoding proteins that show homology and function in the utilization of the siderophores rhizobactin 1021 by Sinorhizobium meliloti and pyochelin by Pseudomonas aeruginosa, respectively. J Bacteriol 186:2996–3005

    Article  CAS  Google Scholar 

  • Ogawa K, Tobe N (1966) A spectrophotometric study of the complex formation between iron(III) and sulfosalicylic acid. Bull Chem Soc Jpn 39:223–227

    Article  CAS  Google Scholar 

  • Ohta A, Takahashi N, Shirokoma Y, Yuasa K (1990) Heterocycles 30:875–884

    Google Scholar 

  • Okujo N, Saito M, Yamamoto S, Yoshida T, Miyoshi S, Shimoda S (1994) Structure of vulnibactin, a new polyamine-containing siderophore from Vibrio vulnificus. BioMetals 7:109–116

    PubMed  CAS  Google Scholar 

  • Parke JL, Gurian-Sherman D (2001) Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annu Rev Phytopathol 39:225–258

    Article  PubMed  CAS  Google Scholar 

  • Patel HM, Walsh CT (2001) In vitro reconstitution of the Pseudomonas aeruginosa nonribosomal peptide synthesis of pyochelin: characterization of backbone tailoring thiazoline reductase and N-methyltransferase activities. Biochemistry 40:9023–9031

    Article  PubMed  CAS  Google Scholar 

  • Patel HM, Tao J, Walsh CT (2003) Epimerization of an l-cysteinyl to a d-cysteinyl residue during thiazoline ring formation in siderophore chain elongation by pyochelin synthetase from Pseudomonas aeruginosa. Biochemistry 42:10514–10527

    Article  PubMed  CAS  Google Scholar 

  • Paulsen IT, Press CM, Ravel J, et al (2005) Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol 23:873–878

    Article  PubMed  CAS  Google Scholar 

  • Payne GW, Ramette A, Rose HL, et al (2006) Application of a recA gene-based identification approach to the maize rhizosphere reveals novel diversity in Burkholderia species. FEMS Microbiol Lett 259:126–132

    Article  PubMed  CAS  Google Scholar 

  • Peterson T, Nielands JB (1979) Revised structure of a catecholamide spermidine siderophore. Tetrahedron Lett 20:4805–4808

    Article  Google Scholar 

  • Quadri LEN (2000) Assembly of aryl-capped siderophores by modular peptide synthetases and polyketide synthetases. Mol Microbiol 37:1–12

    Article  PubMed  CAS  Google Scholar 

  • Quadri LEN, Sello J, Keating TA, Weinreb PH, Walsh CT (1998) Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin. Chem Biol 5:631–645

    Article  PubMed  CAS  Google Scholar 

  • Quadri LEN, Keating TA, Patel HM, Walsh CT (1999) Assembly of the Pseudomonas aeruginosa nonribosomal peptide siderophore pyochelin: in vitro reconstitution of aryl-4,2-bisthiazoline synthetase activity from PchD, PchE and PchF. Biochemistry 38:14941–14954

    Article  PubMed  CAS  Google Scholar 

  • Ratledge C, Dover LG (2000) Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54:881–941

    Article  PubMed  CAS  Google Scholar 

  • Ratledge C, Hall MJ (1972) Isolation and properties of auxotrophic mutants of Mycobacterium smegmatis requiring either salicylic acid or mycobactin. J Gen Microbiol 72:143–150

    PubMed  CAS  Google Scholar 

  • Ratledge C, Winder FG (1962) The accumulation of salicylic acid by mycobacteria during growth on iron-deficient medium. Biochem J 84:501–506

    PubMed  CAS  Google Scholar 

  • Ratledge C, Macham LP, Brown KA, Marshall BJ (1974) Iron transport in Mycobacterium smegmatis: a restricted role for salicylic acid in the extracellular environment. Biochim Biophys Acta 372:39–51

    PubMed  CAS  Google Scholar 

  • Ravel J, Cornelis P (2003) Genomics of pyoverdine-mediated iron uptake in pseudomonads. Trends Microbiol 11:195–200

    PubMed  CAS  Google Scholar 

  • Reik R, Spilker T, LiPuma JJ (2005) Distribution of Burkholderia cepacia complex species among isolates recovered from persons with or without cystic fibrosis. J Clin Microbiol 43:2926–2928

    Article  PubMed  Google Scholar 

  • Reimmann C, Serino L, Beyeler M, Haas D (1998) Dihydroaeruginoic acid synthetase and pyochelin synthetase, products of the pchEF genes are induced by extracellular pyochelin in Pseudomonas aeruginosa. Microbiology 144:3135–3148

    Article  PubMed  CAS  Google Scholar 

  • Reimmann C, Patel HM, Serino L, Barone M, Walsh CT, Haas D (2001) Essential PchG-dependent reduction in pyochelin biosynthesis of Pseudomonas aeruginosa. J Bacteriol 183:813–820

    Article  PubMed  CAS  Google Scholar 

  • Reimmann C, Patel HM, Walsh CT, Haas D (2004) PchC thioesterase optimizes nonribosomal biosynthesis of the peptide siderophore pyochelin in Pseudomonas aeruginosa. J Bacteriol 186:6367–6373

    Article  PubMed  CAS  Google Scholar 

  • Rinehart KL, Staley AL, Wilson SR, Ankenbauer RG, Cox CD (1995) Stereochemical assignment of the pyochelins. J Org Chem 60:2786–2791

    Article  CAS  Google Scholar 

  • Rodley PD, Romling U, Tummler B (1995) A physical genome map of the Burkholderia cepacia type strain. Mol Microbiol 17:57–67

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez GM, Voskuil MI, Gold B, Schoolnik GK, Smith I (2002) ideR, an essential gene in Mycobacterium tuberculosis: role of IdeR in iron-dependent gene expression, iron metabolism, and oxidative stress response. Infect Immun 70:3371–3381

    Article  PubMed  CAS  Google Scholar 

  • Saxena B, Modi M, Modi VV (1986) Isolation and characterization of siderophores from Azospirillum lipoferum D-2. J Gen Microbiol 132:2219–2224

    CAS  Google Scholar 

  • Schalk IJ, Yue WW, Buchanan SK (2004) Recognition of iron-free siderophores by TonB-dependent iron transporters. Mol Microbiol 54:14–22

    Article  PubMed  CAS  Google Scholar 

  • Schlegel K, Taraz K, Budzikiewicz H (2004) The stereoisomers of pyochelin, a siderophore of Pseudomonas aeruginosa. BioMetals 17:409–414

    Article  PubMed  CAS  Google Scholar 

  • Schmidli-Sacherer P, Keel C, Defago G (1997) The global regulator GacA of Pseudomonas fluorescens CHA0 is required for suppression of root diseases in dicotyledons but not in Graminae. Plant Pathol 46:80–90

    Article  CAS  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  PubMed  CAS  Google Scholar 

  • Serino L, Reimmann C, Baur H, Beyeler M, Visca P, Haas D (1995) Structural genes for salicylate biosynthesis from chorismate in Pseudomonas aeruginosa. Mol Gen Genet 249:217–228

    Article  PubMed  CAS  Google Scholar 

  • Serino L, Reimmann C, Visca P, Beyeler M, Della Chiesa V, Haas D (1997) Biosynthesis of pyochelin and dihydroaeruginoic acid requires the iron-regulated pchDCBA operon in Pseudomonas aeruginosa. J Bacteriol 179:248–257

    PubMed  CAS  Google Scholar 

  • Sokol PA (1984) Production of the ferripyochelin outer-membrane receptor by Pseudomonas species. FEMS Microbiol Lett 23:313–317

    Article  CAS  Google Scholar 

  • Sokol PA (1986) Production and utilization of pyochelin by clinical isolates of Pseudomonas cepacia. J Clin Microbiol 23:560–562

    PubMed  CAS  Google Scholar 

  • Sokol PA (1987) Tn5 insertion mutants of Pseudomonas aeruginosa deficient in surface expression of ferripyochelin-binding protein. J Bacteriol 169:3365–3368

    PubMed  CAS  Google Scholar 

  • Sokol PA, Woods DE (1983) Demonstration of an iron-siderophore-binding protein in the outer membrane of Pseudomonas aeruginosa. Infect Immun 40:665–669

    PubMed  CAS  Google Scholar 

  • Sokol PA, Lewis CJ, Dennis JJ (1992) Isolation of a novel siderophore from Pseudomonas cepacia. J Med Microbiol 36:184–189

    Article  PubMed  CAS  Google Scholar 

  • Sokol PA, Darling P, Woods DE, Mahenthiralingam E, Kooi C (1999) Role of ornibactin biosynthesis in the virulence of Burkholderia cepacia: characterization of pvdA, the gene encoding l-ornithine N 5-oxygenase. Infect Immun 67:4443–4455

    PubMed  CAS  Google Scholar 

  • Sokol PA, Darling P, Lewenza S, Corbett CR, Kooi CD (2000) Identification of a siderophore receptor required for ferric ornibactin uptake in Burkholderia cepacia. Infect Immun 68:6554–6560

    Article  PubMed  CAS  Google Scholar 

  • Speert DP (2001) Understanding Burkholderia cepacia: epidemiology, genomovars and virulence. Infect Med 18:49–56

    Google Scholar 

  • Speert DP (2002) Advances in Burkholderia cepacia complex. Pediatr Respir Rev 3:230–235

    Article  Google Scholar 

  • Speert DP, Henry D, Vandamme P, Corey M, Mahenthiralingam E (2002) Epidemiology of Burkholderia cepacia complex in patients with cystic fibrosis, Canada. Emerg Infect Dis 8:181–187

    PubMed  Google Scholar 

  • Sriyosachati S, Cox CD (1986) Siderophore-mediated iron acquisition from transferrin by Pseudomonas aeruginosa. Infect Immun 52:885–891

    PubMed  CAS  Google Scholar 

  • Stanier RY, Palleroni NJ, Doudoroff M (1966) Aerobic pseudomonads—a taxonomic study. J Gen Microbiol 43:159–271

    PubMed  CAS  Google Scholar 

  • Stephan H, Freund S, Beck W, Jung G, Meyer J-M, Winkelmann G (1993) Ornibactins—a new family of siderophores from Pseudomonas cepacia. BioMetals 6:93–100

    Article  PubMed  CAS  Google Scholar 

  • Stojiljkovic I, Perkins-Balding D (2002) Processing of heme and heme-containing proteins by bacteria. DNA Cell Biol 21:281–295

    Article  PubMed  CAS  Google Scholar 

  • Tabacchioni S, Bevivino A, Dalmastri C, Chiarini L (2002) Burkhoderia cepacia complex in the rhizosphere: a minireview. Ann Microbiol 52:103–117

    Google Scholar 

  • Taraz K, Ehlert G, Geisen K, Budzikiewicz H, Korth H, Pulverer G (1990) Protochelin, ein catecholat-siderophor aus einem bakterium (DMS Nr. 5746). Z Naturforsch 45b:1327–1332

    Google Scholar 

  • Tseng C-F, Burger A, Mislin GLA, et al (2006) Bacterial siderophores: the solution stoichiometry and coordination of the Fe(III) complexes of pyochelin and related compounds. J Biol Inorg Chem 11:419–432

    Article  PubMed  CAS  Google Scholar 

  • Tuanyok A, Kim HS, Nierman WC, et al (2005) Genome-wide expression analysis of iron regulation in Burkholderia pseudomallei and Burkholderia mallei using DNA microarrays. FEMS Microbiol Lett 252:327–335

    Article  PubMed  CAS  Google Scholar 

  • Visca P, Colotti G, Serino L, Verzili D, Orsi N, Chiancone E (1992) Metal regulation of siderophore synthesis in Pseudomonas aeruginosa and functional effects of siderophore-metal complexes. Appl Environ Microbiol 58:2886–2893

    PubMed  CAS  Google Scholar 

  • Visca P, Ciervo A, Sanfilippo V, Orsi N (1993) Iron-regulated salicylate synthesis by Pseudomonas spp. J Gen Microbiol 139:1995–2001

    PubMed  CAS  Google Scholar 

  • Visca P, Ciervo A, Orsi N (1994) Cloning and nucleotide sequence of the pvdA gene encoding the pyoverdin biosynthetic enzyme l-ornithine N 5-oxygenase in Pseudomonas aeruginosa. J Bacteriol 176:1128–1140

    PubMed  CAS  Google Scholar 

  • Visca P, Leoni L, Wilson MJ, Lamont IL (2002) Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas. Mol Microbiol 45:1177–1190

    Article  PubMed  CAS  Google Scholar 

  • Visser MB, Majumdar S, Hani E, Sokol PA (2004) Importance of the ornibactin and pyochelin siderophore transport systems in Burkholderia cenocepacia lung infections. Infect Immun 72:2850–2857

    Article  PubMed  CAS  Google Scholar 

  • Wandersman C, Stojiljkovic I (2000) Bacterial heme sources: the role of heme, hemoprotein receptors and hemophores. Curr Opin Microbiol 3:215–220

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Lory S, Ramphal R, Jin S (1996) Isolation and characterisation of Pseudomonas aeruginosa genes inducible by respiratory mucus derived from cystic fibrosis patients. Mol Microbiol 22:1005–1012

    Article  PubMed  CAS  Google Scholar 

  • Weingart C, White CE, Liu S, et al (2005) Direct binding of the quorum sensing regulator CepR of Burkholderia cenocepacia to two target promoters in vitro. Mol Microbiol 57:452–467

    Article  PubMed  CAS  Google Scholar 

  • Whitby PW, VanWagoner T, Springer JM, Morton DJ, Seale TW, Stull TL (2006) Burkholderia cenocepacia utilizes ferritin as an iron source. J Med Microbiol 55:661–668

    Article  PubMed  CAS  Google Scholar 

  • Wilson MJ, McMorran BJ, Lamont IL (2001) Analysis of promoters recognized by PvdS, an extracytoplasmic-function sigma factor protein from Pseudomonas aeruginosa. J Bacteriol 183:2151–2155

    Article  PubMed  CAS  Google Scholar 

  • Wyckoff EE, Lopreato GF, Tipton KA, Payne SM (2005) Shigella dysenteriae ShuS promotes utilization of heme as an iron source and protects against heme toxicity. J Bacteriol 187:5658–5664

    Article  PubMed  CAS  Google Scholar 

  • Zamri A, Abdallah MA (2000) An improved stereocontrolled synthesis of pyochelin, siderophore of Pseudomonas aeruginosa and Burkholderia cepacia. Tetrahedron 56:249–256

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Cornelia Reimmann and Colin Ratledge for critical reading of the manuscript, and Kirsty Agnoli for help with the MDL ISIS Draw Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S. Thomas.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10534-007-9100-0

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, M.S. Iron acquisition mechanisms of the Burkholderia cepacia complex. Biometals 20, 431–452 (2007). https://doi.org/10.1007/s10534-006-9065-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-006-9065-4

Keywords

Navigation