Skip to main content
Log in

“Trade-off” in Antarctic bacteria: limnetic psychrotrophs concede multiple enzyme expressions for multiple metal resistance

  • Original Paper
  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

The present study examines the metal and antibiotic resistant bacteria in ice and water from lakes east and west of the Indian base camp (Maitri) in Antarctica. The isolates from western and eastern lakes showed distinct geographical differences in properties like metal resistance and enzyme expression. This may be attributed to high organic loading in the lakes on the west of Maitri. However, there was no marked geopraphical distinction in antibiotic resistance between the lakes. Bacteria from the lakes on the eastern side showed resistance to three or more metals including mercury while, those from the western were resistant to only 1–2 metals excluding mercury. Multiple enzyme expression was more pronounced in the lakes on the western side. On the eastern side multiple metal resistance was encountered in bacterial isolates associated with fewer enzyme expressions suggesting a “trade-off”. Thus these Antarctic isolates from the east trade their ability to express multiple enzymes for developing resistance to multiple metals including mercury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alam SI, Singh L (2002) Proteolytic heterotrophic bacteria of cyanobacterial assemblage from Schirmacher oasis, Antarctica, capable of growing under extreme conditions. Curr Sci 83: 1000–1004

    Google Scholar 

  • Barbieri P, Galassi G, Galli E (1989) Plasmid-encoded mercury resistance in a Pseudomonas stutzeri strain that degrades o-xylene. FEMS Microbiol Ecol 62: 375–384

    Article  CAS  Google Scholar 

  • Barbieri P, Bestetti G, Reniero D, Galli E (1996) Mercury resistance in aromatic compound degrading Pseudomonas strains. FEMS Microbiol Ecol 20: 185–194

    Article  CAS  Google Scholar 

  • Barkay T, Gillman M, Turner RR (1997) Effects of dissolved organic carbon and salinity on bioavailability of mercury. Appl Environ Microbiol 63: 4267–4271

    Google Scholar 

  • Beja O, Koonin EV. Aravind L, Taylor LT, Seitz H, Stein JL, Bensen DC, Feldman RA, Swanson RV, DeLong EF (2002) Comparative genomic analysis of archaeal genotypic variants in a single population and in two different oceanic provinces. Appl Environ Microbiol 68: 335–345

    Article  PubMed  CAS  Google Scholar 

  • Bohannan BJ, Kerr B, Jessup CM, Hughes JB, Sandvik G 2002 Trade-offs and coexistence in microbial microcosms. Antonie van Leeuwenhoek 81: 107–115

    Article  PubMed  CAS  Google Scholar 

  • Bonner WN. 1984 Conservation and the Antarctic. In: Laws RM (ed) Antarctic Ecology, vol. 2, Academic Press, London, pp 821–850

    Google Scholar 

  • Byerley JJ, Scharer JM (1992) Natural release of copper and zinc into the aquatic environment. Hydrometallurgy 30: 107–126

    Article  CAS  Google Scholar 

  • Canstein VH, Li Y, Timmis KN, Deckwer WD, Wagner-Dobler I (1999) Removal of mercury from chloralkali electrolysis wastewater by a mercury-resistant Pseudomonas putida strain. Appl Environ Microbiol 65: 5279–5284

    Google Scholar 

  • Chandy JP (1999) Heavy metal tolerance in chromogenic and non-chromogenic marine bacteria from Arabian Gulf. Environ Monit Assess 59: 321–330

    Article  CAS  Google Scholar 

  • Chan KY, Dean ACR (1988) Effects of cadmium and lead on growth, respiration and enzyme activity of the marine bacterium Pseudomonas marina. Chemosphere 17: 597–607

    Article  CAS  Google Scholar 

  • De Flora S, Bennicelli C, Bagnasco M (1994) Genotoxicity of mercury compounds: a review. Mut Res 317: 57–79

    Google Scholar 

  • De Souza MJBD, Nair S, Loka Bharathi PA, Chandramohan D (2006) Metal and antibiotic-resistance in psychrotrophic bacteria from Antarctic marine waters. Ecotoxicol 15: 379–384

    Article  CAS  Google Scholar 

  • Duxbury T (1986) Microbes and heavy metals: An ecological overview. Microbiol Sci 3: 330–333

    PubMed  CAS  Google Scholar 

  • Evans CW, Hills JM, Dickson JMJ (2000) Heavy metal pollution in Antarctica: a molecular ecotoxicological approach to exposure assessment. J Fish Biol 57: 8–19

    Article  CAS  Google Scholar 

  • Forstner U, Wittmann GTW (1979) Metal pollution in the aquatic environment. New York NY: Springer Verlag

    Google Scholar 

  • Guhathakurta H, Kaviraj A (2000) Heavy metal concentration in water, sediment, shrimp (Penaeus monodon) and mullet (Liza parsia) in some brackish water ponds of Sunderban, India. Mar Pollut Bull 40: 914–920

    Article  CAS  Google Scholar 

  • Hermansson M, Jones GW, Kjelleberg S (1987) Frequency of antibiotic and heavy metal resistance, pigmentation and plasmids in bacteria of marine air-water interface. Appl Environ Microbiol 53: 2338–2342

    PubMed  CAS  Google Scholar 

  • Hideomi N, Ishikawa T, Yasunaga S, Kondo I, Mitsuhasi S (1977) Frequency of heavy-metal resistance in bacteria from inpatients in Japan. Nature 266: 165–167

    Article  Google Scholar 

  • Hoppe HG, Giesenhagen HC, Gocke K (1998) Changing patterns of bacterial substrate decomposition in a eutrophication gradient. Aquat Microb Ecol 15: 1–13

    Article  Google Scholar 

  • Ingole BS, Parulekar AH (1987) Microfauna of Schirmacher Oasis, Antarctica. 1. Water-moss communities 4 Indian Scientific Expedition to Antarctica Report. (Tech. Rep.; 4). DOD; 139–148

  • Ka JO, Holben WE, Tiedje JM (1994) Genetic and phenotypic diversity of 2,4-dichlorophenoxyacetic acid (2,4-D) degrading bacteria isolated from (2, 4-D) treated field soils. Appl Environ Microbiol 60: 1106–1115

    PubMed  CAS  Google Scholar 

  • Kim SD, Ma H, Allen HE, Cha DK (1999) Influence of dissolved organic matter on the toxicity of of copper to Ceriodaphnia dubia: effect of complezation kinetics. Environ Toxicol Chem 18: 2433–2437

    Article  CAS  Google Scholar 

  • Kobori H, Taga N (1978) Phosphatase activity and its role in the mineralization of organic phosphorus in coastal seawater. J Exp Mar Ecol 36: 23–39

    Article  Google Scholar 

  • Krishnamurti AJ, Nair VR. 1999 Concentration of metals in shrimps and crabs from Thane- Basin creek system Maharashtra. Ind J Mater Sci 28, 92–95

    Google Scholar 

  • Loka Bharathi PA, Nair S, De Souza MJBD, Chandramohan D (2001) Assessment of viability in the bacterial standing stock of the Antarctic sea from the Indian side. Oceanologica Acta 24: 577–580

    Article  Google Scholar 

  • Mudryk Z, Donderski W, Skorczewski P, Walczak M (2000) Effect of some heavy metals on neustonic and planktonic bacteria isolated from the deep of Gdansk. Oceanol Stud 29: 89–99

    CAS  Google Scholar 

  • Mueller HJ, Hinton J (1941) A protein-free medium for primary isolation of the Gonococcus and Meningococcus. Proceedings of the Society of Experimental Biological Medicine 48, 330–333

    Google Scholar 

  • Nair S, Chandramohan D, Loka Bharathi PA (1992) Differential sensitivity of pigmented and non-pigmented marine bacteria to metals and antibiotics. Wat Res 26: 431–434

    Article  CAS  Google Scholar 

  • Nair S, Loka Bharathi PA, Chandramohan D (1993) Effect of Heavy metals on Bacillus sp. & Flavobacterium sp. Ecotoxicol 2: 220–229

    Article  CAS  Google Scholar 

  • Nygaerd T, Lie E, Roev N, Steinnes E (2001) Metal Dynamics in an Antarctic Food Chain. Mar-Pollut-Bull 42: 598–602

    Article  Google Scholar 

  • Oliver JD, Smith JF (1982) Intestinal microflora of Deep Sea Animal: A Taxonomic Study. Deep Sea Res 29: 785–794

    Article  Google Scholar 

  • Olson BH, Cayless SM, Ford S, Lester JN (1991) Toxic element contamination and the occurrence of mercury-resistant bacteria in mercury contaminated soil sediments and sludges. Arch Environ Contam Toxicol 20: 226–233

    Article  CAS  Google Scholar 

  • Petri G, Zauke GP (1993) Trace metals in crustaceans in the Antarctic Ocean. Ambio 22: 529–536

    Google Scholar 

  • Pomeroy LR, Deibel D (1986) Temperature regulation of bacterial activity during the spring bloom in Newfoundland coastal waters. Science 223: 359–361

    Article  Google Scholar 

  • Ramaiah N, De J (2003) Unusual rise in mercury-resistant bacteria in coastal environs. Microb Ecol 45: 444–454

    Article  PubMed  CAS  Google Scholar 

  • Rudolph E, Benninghof WS (1977) Competative and adaptive responses of invading versus indigenous biotas in Antarctica––A plea for organized monitoring. In: Clano GA (eds) Adaptations within Antarctic ecosystems, Smithsonian Institute, Washington DC, pp 1211–1225

    Google Scholar 

  • Sabry SA, Ghozlan HA, Abou-Zeid DM (1997) Metal tolerance and antibiotic resisitance patterns of a bacterial population isolated from sea water. J Appl Microbiol 82, 245–252

    PubMed  CAS  Google Scholar 

  • Smibert RM, Krieg NR (1981) General characterization. In: Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA Krieg NR, Phillips GB (eds) Manual of methods for general bacteriology. American Society for microbiology, Washington DC p 524

    Google Scholar 

  • Stolzenburg TR, Stanforth RR, Nichols DG (1986) Potential health effects of mercury in water supply wells. J Am Water Works Assoc 78: 45–48

    CAS  Google Scholar 

  • Tilman D. 2000 Causes, consequences and ethics of biodiversity. Nature 405: 208–211

    Article  PubMed  CAS  Google Scholar 

  • Traxler RW, Wood EM (1981) Multiple metal tolerance of bacterial isolates. Developments in industrial microbiology, Underkofler LA, Wulf ML, Flagstaff AZ (eds) (USA) 9–15 Aug. 1980 22, 521–528

  • Vaqué D, Pace ML, Findlay S, Lints D (1992) Fate of bacterial production in a heterotrophic ecosystem: grazing by protozoans and metazoans in the Hudson Estuary. Mar Ecol Prog Ser 89: 155–163

    Article  Google Scholar 

  • Vincent WF (1988) Microbial ecosystems of Antarctica. Cambridge University Press, Cambridge p 304

    Google Scholar 

  • Walton DWH (1990) Colonisation of terrestrial habitats––organisms, opportunities and occurrence. In: Kerry KR, Hempel G (eds) Antarctic ecosystems, ecosystems, ecological change and conservation, Springer, Berlin, pp 51–60

    Google Scholar 

  • Wylie JL, Currie DJ (1991) The relative importance of bacteria and algae as a food source for crustacean zooplankton. Limnol Oceanogr 36: 708–728

    Article  CAS  Google Scholar 

  • Yamamoto Y, Honda K, Tatsukawa R (1987) Heavy metal accumulation in Antarctic krill Euphausia superba. Proc-Nipr-Symp-Polar-Biol Natl.-Inst.-of-Polar-Research,-Tokyo-Japan 1, 198–204

Download references

Acknowledgements

PAL thanks the leader and members of the 13th Antarctic expedition for all the help rendered during the expedition. Dr. V.K. Dargalkar’s able assistance in the strategic collection of water samples from freshwater lakes in and around the Indian base camp–Maitri is acknowledged. NIO no. 4215.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria-Judith De Souza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Souza, MJ., Loka Bharathi, P.A., Nair, S. et al. “Trade-off” in Antarctic bacteria: limnetic psychrotrophs concede multiple enzyme expressions for multiple metal resistance. Biometals 20, 821–828 (2007). https://doi.org/10.1007/s10534-006-9045-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-006-9045-8

Keywords

Navigation