, 19:389 | Cite as

DMPS and N-acetylcysteine induced renal toxicity in mice exposed to mercury

  • Ricardo Brandão
  • Francielli W. Santos
  • Gilson Zeni
  • João B. T. Rocha
  • Cristina W. Nogueira


Acute effects of mercuric chloride (HgCl2) were evaluated on mice. Mice received a single dose of HgCl2 (4.6 mg/kg, subcutaneously) for three consecutive days. Thirty minutes after the last injection with HgCl2, mice received one single injection of 2,3-dimercapto-1-propanesulfonic acid (DMPS) or N-acetylcysteine (NAC) or diphenyl diselenide (PhSe)2. DMPS, NAC and (PhSe)2 were utilized as therapy against mercury exposure. At 24 h after the last HgCl2 injection, blood, liver and kidney samples were collected. δ-Aminolevulinate dehydratase (δ-ALA-D) and Na+, K - + ATPase activities, thiobarbituric acid-reactive substances (TBARS), non-protein thiols (NPSH) and ascorbic acid concentrations were evaluated. Plasma aspartate (AST) and alanine (ALT) aminotransferase activities, as well as urea and creatinine levels were determined. The group of mice exposed to Hg + (PhSe)2 presented 100% of lethality. Exposure with HgCl2 caused a decrease on the body weight gain and treatments did not modify this parameter. δ-ALA-D, AST and ALT activities, TBARS, ascorbic acid levels and NPSH (hepatic and erythrocytic) levels were not changed after HgCl2 exposure. HgCl2 caused an increase in renal NPSH content and therapies did not modify these levels. Mice treated with (PhSe)2, Hg + NAC and Hg + DMPS presented a reduction in plasma NPSH levels. Creatinine and urea levels were increased in mice exposed to Hg + NAC, while Hg + DMPS group presented an increase only in urea level. Na+, K - + ATPase activity was inhibited in mice exposed to Hg + DMPS and Hg + NAC. In conclusion, therapies with (PhSe)2, DMPS and NAC following mercury exposure must be better studied because the formation of more toxic complexes with mercury, which can mainly damage renal tissue.

Key words:

mercury Na+ K+-ATPase diphenyl diselenide 2,3-dimercapto-1-propanesulfonic acid N-acetylcysteine 


  1. Anner, BM, Moosmayer, E 1992Mercury blocks Na+-K+-ATPase by a ligand-dependent and reversible mechanismAm J Physiol262F830F836PubMedGoogle Scholar
  2. Aposhian, HV, Aposhian, MM 1990Meso-2,3-dimercaptosuccinic acid: chemical, pharmacological and toxicological properties of an orally effective metal chelating agentAnnu Rev Pharmacol Toxicol30279306PubMedCrossRefGoogle Scholar
  3. Aposhian, HV, Maiorino, RM, Gonzalez-Ramirez, D, Zuniga-Charles, M, Xu, Z, Hurlbut, KM, Junco-Munoz, P, Dart, RC, Aposhian, MM 1995Mobilization of heavy metals by newer, therapeutically useful chelating agentsToxicology972338PubMedCrossRefGoogle Scholar
  4. Aruoma, OI, Halliwell, B, Hoey, BM, Butler, J 1989The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide and hypochlorous acidFree Rad Biol Med6593597PubMedCrossRefGoogle Scholar
  5. Banner, W,Jr, Koch, M, Capin, DM, Hopf, SB, Chang, S, Tong, TG 1986Experimental chelation therapy in chromium, lead and boron intoxication with N-acetylcysteine and other compoundsToxicol Appl Pharmacol83142147PubMedCrossRefGoogle Scholar
  6. Barbosa, NBV, Rocha, JBT, Zeni, G, Emanuelli, T, Beque, MC, Braga, AL 1998Effect of organic forms of selenium on δ-Aminolevulinate dehydratase from liver, kidney and brain of adult ratsToxicol Appl Pharmacol149243253PubMedCrossRefGoogle Scholar
  7. Bechara, EJ 1996Oxidative stress in acute intermittent porphyria and lead poisoning may be triggered by 5-aminolevulinic acidBraz J Med Biol Res29841851PubMedGoogle Scholar
  8. Berend, N 1985Inhibition of bleomycin lung toxicity by N-acetyl cysteine in the ratPathology17108110PubMedGoogle Scholar
  9. Bock, A, Forchammer, JH, Leinfelder, W, Sawers, G, Vepreck, B, Zinnia, F 1991Selenocysteine: the 21st amino acidMol Microbiol5515520PubMedGoogle Scholar
  10. Borges, VC, Rocha, JBT, Nogueira, CW 2005Effect of diphenyl diselenide, diphenyl ditelluride and ebselen on cerebral Na+, K+-ATPase activity in ratsToxicology215191197PubMedCrossRefGoogle Scholar
  11. Clarkson, TW 1997The toxicology of mercuryCrit Rev Clin Lab Sci34369403PubMedCrossRefGoogle Scholar
  12. Doucet, A 1988Function and control of Na+-K+-ATPase in single nephron segments of the mammalian kidneyKidney Int34749760PubMedGoogle Scholar
  13. Draper, HH, Hadley, M 1990Malondialdehyde determination as index of lipid peroxidationMethods Enzymol186421431PubMedGoogle Scholar
  14. Ellman, GL 1959Tissue sulfhydryl groupsArch Biochem827077PubMedCrossRefGoogle Scholar
  15. Emanuelli, T, Rocha, JBT, Pereira, ME, Porciuncula, LO, Morsch, VM, Martins, AF, Souza, DOG 1996Effect of mercury chloride intoxication and dimercaprol treatment on delta-aminolevulinate dehydratase from brain, liver and kidney of adult micePharmacol Toxicol79136143PubMedCrossRefGoogle Scholar
  16. Farina, M, Brandão, R, Lara, FS, Soares, FA, Souza, DO, Rocha, JB 2003Profile of nonprotein thiols, lipid peroxidation and delta aminolevulinate dehydratase activity in mouse kidney and liver in response to acute exposure to mercuric chloride and sodium seleniteToxicology184179187PubMedCrossRefGoogle Scholar
  17. Flohé, L, Gunzler, WA, Shock, HH 1973Glutathione peroxidase: a selenium enzymeFEBS Lett32132134PubMedCrossRefGoogle Scholar
  18. Fiske, CH, Subbarow, YJ 1925The calorimetric determination of phosphorusBiol Chem66375381Google Scholar
  19. Folmer, V, Santos, FW, Savegnago, L, Brito, VB, Nogueira, CW, Rocha, JBT 2004High sucrose consumption potentiates the sub-acute cadmium effect on Na+-K+-ATPase but not on and δ-aminolevulinate dehydratase in miceToxicol Lett153333341PubMedCrossRefGoogle Scholar
  20. Garcia, TA, Corredor, L 2004Biochemical changes in the kidneys after perinatal intoxication with lead and/or cadmium and their antagonistic effects when coadministeredEcotoxicol Environ Saf57184189CrossRefGoogle Scholar
  21. Huang, YL, Cheng, SL, Lin, TH 1996Lipid peroxidation in rats administrated with mercuric chlorideBiol Trace Elem Res52193206PubMedGoogle Scholar
  22. Jacques-Silva, MC, Nogueira, CW, Broch, LC, Flores, EM, Rocha, JB 2001Diphenyl diselenide and ascorbic changes deposition of selenium and ascorbic in liver and brain of micePharmacol Toxicol88119125PubMedCrossRefGoogle Scholar
  23. Jones, MM 1994Chemistry of chelation: chelating agent antagonists for toxic metalsGoyer, RACherian, MG eds. Handbook of Experimental Pharmacology, Toxicology of Metals: Biochemical Aspects, Vol. 115Springer-VerlagBerlin, Germany279304Google Scholar
  24. Jorgensen, PL 1986Structure, function and regulation of Na+-K+-ATPase in the kidneyKidney Int291020PubMedGoogle Scholar
  25. Klaassen, CD 1996Heavy metals and heavy-metal antagonistsWonsiewics, MJMcCurdy, P eds. The pharmacological Basis of TherapeuticsMcGraw-HillNew York16491671Google Scholar
  26. Klonne, DR, Johnson, DR 1988Enzyme activity and sulfhydryl status in rat renal cortex following mercuric chloride and dithiothreitol administrationToxicol Lett42199205PubMedCrossRefGoogle Scholar
  27. Lash, LH, Zalups, RK 1996Alterations in renal cellular glutathione metabolism after in vivo administration of subtoxic dose of mercuric chlorideJ Biochem Toxicol1119PubMedCrossRefGoogle Scholar
  28. Lund, BO, Miller, DM, Woods, JS 1991Mercury-induced H2O2 production and lipid peroxidation in vitro in rat kidney mitochondriaBiochem Pharmacol42181187CrossRefGoogle Scholar
  29. Miller, DM, Woods, JS 1993Redox activities of mercurythiol complexes: implications for mercury-induced porphyria and toxicityChem Biol Interact882335PubMedCrossRefGoogle Scholar
  30. Moldeus, P, Cotgreave, IA, Berggren, M 1986Lung protection by a thiol-containing antioxidant: N-acetylcysteineRespiration503142PubMedGoogle Scholar
  31. Nogueira, CW, Borges, VC, Zeni, G, Rocha, JBT 2003aOrganochalcogens effects on δ-aminolevulinate dehydratase activity from human erythrocytic cells in vitro Toxicology191169178CrossRefGoogle Scholar
  32. Nogueira, CW, Meotti, FC, Curte, E, Pilissão, C, Zeni, G, Rocha, JBT 2003bInvestigations into the potential neurotoxicity induced by diselenides in mice and ratsToxicology1832937CrossRefGoogle Scholar
  33. Nogueira, CW, Soares, FA, Nascimento, PC, Muller, D, Rocha, JBT 2003c2,3-dimercaptopropane-1-sulfonic acid and meso-2,3-dimercaptosuccinic acid increase mercury- and cadmium-induced inhibition of δ-aminolevulinate dehydrataseToxicology1848595CrossRefGoogle Scholar
  34. Nogueira, CW, Zeni, G, Rocha, JBT 2004Organoselenium and organotellurium compounds: toxicology and pharmacologyChem Rev10462556286PubMedCrossRefGoogle Scholar
  35. Paulmier, C 1986Selenoorganic functional groupsPaulmier, C eds. Selenium Reagents and Intermediates in Organic SynthesisPergamon PressOxford, England2551Google Scholar
  36. Pedrenho, AR, Meilhac, GM, Hassón-Voloch, A 1996Inhibitory effects of cadmium and lead on Na+-K+-ATPase of Electrophorus electricus (L.) electrocyteToxic Subs Mech15231247Google Scholar
  37. Pereira, B, Curi, R, Kokubun, E, Bechara, EJ 19925-Aminolevulinic acid-induced alterations of oxidative metabolism in sedentary and exercise-trained ratsJ Appl Physiol72226230PubMedGoogle Scholar
  38. Perottoni, J, Lobato, LP, Silveira, A, Rocha, JBT, Emanuelli, T 2004aEffects of mercury and selenite on δ-aminolevulinate dehydratase activity and on selected oxidative stress parameters in ratsEnviron Res95166173CrossRefGoogle Scholar
  39. Perottoni, J, Rodrigues, OED, Paixão, MW, Zeni, G, Lobato, LP, Braga, AL, Rocha, JBT, Emanuelli, T 2004bRenal and hepatic ALA-D activity and selected oxidative stress parameters of rats exposed to inorganic mercury and organoselenium compoundsFood Chem Toxicol421728CrossRefGoogle Scholar
  40. Putzer, RR, Zhang, Y, Prestera, T, Holtzelaw, WD, Wade, KL, Talalay, P 1995Mercurials and dimercaptans: synergism in the induction of chemoprotective enzymesChem Res Toxicol8103110PubMedCrossRefGoogle Scholar
  41. Rebrin, I, Zicker, S, Wedekind, KJ, Paetau-Robinson, I, Packer, L, Sohal, RS 2005Effect of antioxidant-enriched diets on glutathione redox status in tissue homogenates and mitochondria of the senescence-accelerated mouseFree Rad Biol Med39549557PubMedCrossRefGoogle Scholar
  42. Rivera, M, Zheng, W, Aposhian, HV, Fernando, Q 1989Determination and metabolism of dithiol-chelating agents: VIII. Metal complexes of meso-dimercaptosuccinic acidToxicol Appl Pharmcol10096106CrossRefGoogle Scholar
  43. Rocha, JBT, Freitas, AJ, Marques, ME, Emanuelli, T, Souza, DO 1993Effects of methylmercury exposure during the second stage of rapid post-natal brain growth on negative geotaxis and on delta-aminolevulinate dehydratase of suckling ratsBraz J Med Biol Res2610771083PubMedGoogle Scholar
  44. Rocha, JBT, Pereira, ME, Emanuelli, T, Christofari, RS, Souza, DO 1995Effect of treatment with mercury chloride and lead acetate during the second stage of rapid postnatal brain growth on delta-aminolevulinic acid dehydratase (ALA-D) activity in brain, liver kidney and blood of suckling ratsToxicology1002737PubMedCrossRefGoogle Scholar
  45. Rotruck, JT, Pope, AL, Ganther, HE, Swanson, AB, Hafeman, DG, Hoekstra, WG 1973Selenium: biochemical role as a component of glutatione peroxidaseScience179558560Google Scholar
  46. Santos, FW, Oro, T, Zeni, G, Rocha, JBT, do Nascimento, PC, Nogueira, CW 2004Cadmium induced testicular damage and its response to administration of succimer and diphenyl diselenide in miceToxicol Lett152255263PubMedCrossRefGoogle Scholar
  47. Santos, FW, Zeni, G, Rocha, JBT, Weis, SW, Fachinetto, JM, Favero, AM, Nogueira, CW 2005aDiphenyl diselenide reverses cadmium-induced oxidative damage on mice tissuesChem Biol Interact151159165CrossRefGoogle Scholar
  48. Santos, FW, Zeni, G, Rocha, JBT, do Nascimento, PC, Marques, MS, Nogueira, CW 2005bEfficacy of 2,3-dimercapto-1-propanesulfonic acid (DMPS) and diphenyl diselenide on cadmium induced testicular damage in miceFood Chem Toxicol4317231730CrossRefGoogle Scholar
  49. Sassa, S 1982Delta-aminolevulinic acid dehydratase assayEnzyme28133145PubMedGoogle Scholar
  50. Sassa, S 1998ALA-D porphyriaSem Liver Dis1895101CrossRefGoogle Scholar
  51. Thévenod, F, Friedman, JM 1999Cadmium-mediated oxidative stress in kidney proximal tubule cells induces degradation of Na+/K+-ATPase through proteasomal and endo-lysosomal proteolitic pathwaysFASEB J1317511761PubMedGoogle Scholar
  52. Ursini, F, Maiorino, M, Valente, M, Ferri, KC 1982Purification of pig liver of a protein which protects liposomes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxidaseBiochem Biophys Acta710197211PubMedGoogle Scholar
  53. WHO1976Environmental Health Criteria 1: MercuryWorld Health OrganizationGenevaGoogle Scholar
  54. WHO1990Environmental Health Criteria 101: Methyl mercuryWorld Health OrganizationGenevaGoogle Scholar
  55. Zalups, RK, Lash, LH 1994Advances in understanding the renal transport and toxicity of mercuryJ Toxicol Environ Health42144PubMedGoogle Scholar
  56. Zalups, RK, Minor, KH 1995Luminal and basolateral mechanisms involved in the renal tubular uptake of inorganic mercuryJ Toxicol Environ Health4673100PubMedCrossRefGoogle Scholar
  57. Zalups, RK, Barfuss, DW 1998Participation of mercuric conjugates of cysteine, homocysteine and N-acetylcysteine in mechanisms involved in the renal tubular uptake of inorganic mercuryJ Am Soc Nephrol9551561PubMedGoogle Scholar
  58. Zalups, RK 1998Basolateral uptake of inorganic mercury in the kidneyToxicol Appl Pharmacol151192199PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Ricardo Brandão
    • 1
  • Francielli W. Santos
    • 1
  • Gilson Zeni
    • 1
  • João B. T. Rocha
    • 1
  • Cristina W. Nogueira
    • 1
  1. 1.Departamento de Química, Centro de Ciências Naturais e ExatasUniversidade Federal de Santa MariaSanta MariaBrazil

Personalised recommendations