, Volume 18, Issue 6, pp 587–593 | Cite as

Biosynthesis of Phytochelatins and Arsenic Accumulation in the Marine Microalga Phaeodactylum  tricornutum in Response to Arsenate Exposure

  • Elisabetta Morelli
  • Marco Carlo Mascherpa
  • Gioacchino Scarano


The arsenate-induced synthesis of phytochelatins (PC), intracellular cysteine-rich metal-binding peptides, and its relationship with toxicity and with As accumulation in the cell have been studied in laboratory cultures of the marine microalga Phaeodactylum tricornutum. The time course of cellular PC and As in short-term exposures showed that the involvement of PC in the As detoxification as well as the pathway of cellular As depend on the extent of As accumulation and on the rate of PC synthesis. At arsenate concentrations causing As accumulation at a rate exceeding that of PC synthesis, cells seem to activate a mechanism of release of As mainly in a chemical form not complexed with PC. At arsenate concentrations at which the synthesis of PC occurs at a rate sufficient to allow a significant portion of As accumulated in the cell to be bound, the fate of cellular As seems to be mainly controlled by PC. The occurrence of these different pathways of As detoxification was discussed to explain the pattern of cellular As and PC in cells grown for three days at growth-inhibitory and at no growth-inhibitory concentration of arsenate.

Key words

arsenic phytochelatins Phaeodactylum  tricornutum marine microalgae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahner, BA, Kong, S, Morel, FMM 1995Phytochelatin production in marine algae. 1. An interspecies comparisonLimnol Oceanog40649657Google Scholar
  2. Ahner, BA, Morel, FMM 1995Phytochelatin production in marine algae. 2. Induction by various metalsLimnol Oceanog40658665Google Scholar
  3. Anderson, LCD, Bruland, KW 1991Biochemistry of arsenic in natural water: the importance of methylated speciesEnviron Sci Technol25420427Google Scholar
  4. Bleeker, PM, Schat, H, Vooijs, R, Verkleij, JAC, Ernst, WHO 2003Mechanisms of arsenate tolerance in Cytisus  striatusNew Phytol1573338CrossRefGoogle Scholar
  5. Cobbett, CS 2000Phytochelatin biosynthesis and function in heavy-metal detoxificationCurr Opin Plant Biol3211216PubMedGoogle Scholar
  6. Fahey, RC, Newton, GL 1987Determination of low-molecular-weight thiols using monobromobimane fluorescent labeling and high-performance liquid chromatographyJakoby, WBGriffith, OW eds. Methods in EnzymologyAcademic PressNew York8596Google Scholar
  7. Edmonds, JS, Francesconi, KA 1993Arsenic in the seaOceanogr Mar Biol Ann Rev31111151Google Scholar
  8. Edmonds, JS, Francesconi, KA 1997Arsenic and marine organismsAdv Inorg Chem44147189Google Scholar
  9. Grill, E, Winnacker, EL, Zenk, MH 1985Phytochelatins: the principal heavy-metal complexing peptides of higher plantsScience230674676Google Scholar
  10. Grill, E, Loffler, S, Winnacker, EL, Zenk, MH 1989Phytochelatins, the heavy-metal-binding-peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase)Proc Natl Acad Sci USA8668386842Google Scholar
  11. Guillard, RRL 1975Cultures of phytoplankton for feeding marine invertebratesSmith, WLChanley, MH eds. Culture of marine invertebrates animalsPlenum PressNew York2960Google Scholar
  12. Hartley-Whitaker, J, Woods, C, Meharg, AA 2002Is differential phytochelatin production related to decreased arsenate influx in arsenate tolerant Holcus  lanatus?New Phytol155219225CrossRefGoogle Scholar
  13. Hasegawa, H, Sohrin, Y, Seki, K,  et al. 2001Biosynthesis and release of methylarsenic compounds during the growth of freshwater algaeChemosphere43265272PubMedCrossRefGoogle Scholar
  14. Kaise, T, Fujiwara, S, Tsuzuki, M, Sakurai, T, Saitoh, T, Mastubara, C 1999Accumulation of arsenic in a unicellular alga Chlamidomonas  reinhardtiiAppl Organometal Chem13107111CrossRefGoogle Scholar
  15. Knauer, K, Behra, R, Hemond, H 1999Toxicity of inorganic and methylated arsenic to algal communities from lakes along an arsenic contamination gradientAquat Toxicol46221230CrossRefGoogle Scholar
  16. Meharg, AA 1994Integrated tolerance mechanisms: constitutive and adaptive plant responses to elevated metal concentrations in the environmentPlant Cell Environ17989993Google Scholar
  17. Morelli, E, Scarano, G 2001Synthesis and stability of phytochelatins induced by cadmium and lead in the marine diatom Phaeodactylum  tricornutumMar Environ Res52383395PubMedCrossRefGoogle Scholar
  18. Morelli, E, Scarano, G 2004Copper-induced changes of non-protein thiols and antioxidant enzymes in the marine microalga Phaeodactylum  tricornutumPlant Sci167289296CrossRefGoogle Scholar
  19. Nriagu JO. 1994 Arsenic in the Environment, Part 1, Cycling and Characterization: John Wiley and Sons, 448Google Scholar
  20. Pawlik-Skowronska, B, Pirszel, J, Kalinowska, R, Skowronski, T 2004Arsenic availability, toxicity and direct role of GSH and phytochelatins in As detoxification in the green alga Stichococcus  bacillarisAquat Toxicol70201212PubMedGoogle Scholar
  21. Pickering, IJ, Prince, RC, George, MJ, Smith, RD, George, GN, Salt, DE 2000Reduction and coordination of arsenic in Indian mustardPlant Physiol12211711177PubMedCrossRefGoogle Scholar
  22. Price, NM, Harrison, GI, Hering, JG,  et al. 1991Preparation and chemistry of the artificial algal culture medium AquilBiol Oceanogr6443461Google Scholar
  23. Raab, A, Feldmann, J, Meharg, AA 2004The nature of arsenic-phytochelatin complexes in Holcus  lanatus and Pteris creticaPlant Physiol13411131122PubMedCrossRefGoogle Scholar
  24. Reina, SV, Esteban, E, Goldsbrough, P 2005Arsenate-induced phytochelatins in white lupin: influence of phosphate statusPhysiol Plant1244149Google Scholar
  25. Scarano G. Morelli, E 2002Characterization of cadmium- and lead-phytochelatin complexes formed in a marine microalga in response to metal exposureBioMetals15145151Google Scholar
  26. Schat, H, Llugany, M, Vooijs, R, Hartley-Whitaker, J, Bleeker, PM 2002The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non- hyperaccumulator metallophytesJ Exp Bot5323812392PubMedCrossRefGoogle Scholar
  27. Schmöger, MEV, Oven, M, Grill, E 2000Detoxification of arsenic by phytochelatins in plantsPlant Physiol122793801PubMedGoogle Scholar
  28. Sneller, FEC, Van Heerwaarden, LM, Kraaijeveld-Smit, FJL,  et al. 1999Toxicity of arsenate in Silene  vulgaris: accumulation and degradation of arsenate-induced phytochelatinsNew Phytol144223232CrossRefGoogle Scholar
  29. Suhendrayatna, , Ohki, A, Kuroiwa, T, Maeda, S 1999Arsenic compounds in the freshwater green microalga Chlorella  vulgaris after exposure to arseniteAppl Organometal Chem13127133CrossRefGoogle Scholar
  30. Takimura, O, Fuse, H, Murakami, K, Kamimura, K, Yamaoka, Y 1996Uptake and reduction of arsenate by Dunaliella spAppl Organometal Chem10753756CrossRefGoogle Scholar
  31. Ullrich-Eberius, CI, Sanz, A, Novacky, AJ 1989Evaluation of arsenate and vanadate associated changes of electrical membrane potential and phosphate transport in Lemna  gibba G1J Exp Bot40119128Google Scholar
  32. Zenk, MH 1996Heavy metals detoxification in higher plants – a reviewGene1792130PubMedCrossRefGoogle Scholar
  33. Zhao, FJ, Wang, JR, Barker, JHA, Schat, H, Bleeker, PM, McGrath, SP 2003The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris  vittataNew Phytol159403410Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Elisabetta Morelli
    • 1
  • Marco Carlo Mascherpa
    • 2
  • Gioacchino Scarano
    • 1
  1. 1.Istituto di Biofisica, Consiglio Nazionale delle Ricerche (CNR)Area della Ricerca di PisaPisaItaly
  2. 2.Istituto per i Processi Chimico-Fisici, Consiglio Nazionale delle Ricerche (CNR)Area della Ricerca di PisaPisaItaly

Personalised recommendations