, Volume 18, Issue 1, pp 75–81 | Cite as

The configuration of the chiral carbon atoms in staphyloferrin A and analysis of the transport properties in Staphylococcus aureus

  • Hartmut Drechsel
  • Günther Winkelmann


Staphyloferrin A, the iron-transporting siderophore of Staphylococci, contains two citric acid residues linked to a D-ornithine backbone, having thus three chiral centers. While the chirality of the backbone can be determined after hydrolysis, the chirality of the two citryl residues can only be determined from the intact staphyloferrin A molecule by circular dichroism spectra. The chirality of the quarternary carbon atoms of citryl residues in fungal rhizoferrin and bacterial enantio-rhizoferrin have been determined previously to be R,R and S,S respectively. The present investigation shows that of the three chiral centers in staphyloferrin A, the citryl residues can be assigned an S,S-configuration by comparison with synthetic analogs, confirming a common chirality among the bacterial enantio-rhizoferrin and staphyloferrin A. This suggests that the bacterial carboxylates originate from a common biosynthetic pathway leading to an S,S-configuration, while the fungal rhizoferrin possessing an R,R-configuration must have a different biosynthetic origin. Growth promotion tests with staphylococci revealed that the S,S-configuration of staphyloferrin A and enantio-rhizoferrin enabled iron uptake, while the fungal rhizoferrin with R,R-configuration was not utilized.


siderophores iron staphyloferrin rhizoferrin chirality stereochemistry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Carrano, CJ, Drechsel, H, Kaiser, D, Jung, G, Matzanke, B, Winkelmann, G, Rochel, N, Albrecht-Gary, AM 1996Coordination chemistry of the carboxylate type siderophore rhizoferrin: the iron(III) complex and its metal analogsInorg Chem3564296436CrossRefPubMedGoogle Scholar
  2. Deiss, K, Hantke, K, Winkelmann, G 1998Molecular recognition of siderophores: a study with cloned ferrioxamine receptors (FoxA) from Erwinia herbicola and Yersinia enterocolitica BioMetals11131137CrossRefPubMedGoogle Scholar
  3. Drechsel, H, Metzger, J, Freund, S, Jung, G, Boelaert, JR, Winkelmann, G 1991Rhizoferrin–a novel siderophore from the fungus Rhizopus microsporus varrhizopodiformis. BioMetals4238243Google Scholar
  4. Drechsel, H, Jung, G, Winkelmann, G 1992Stereochemical characterization of rhizoferrin and identification of its dehydration productsBioMetals5141148CrossRefGoogle Scholar
  5. Drechsel, H, Freund, S, Nicholson, G, Haag, H, Jung, O, Zähner, H, Jung, G 1993Purification and chemical characterization of staphyloferrin B, a hydrophilic siderophore from staphylococciBioMetals6185192CrossRefPubMedGoogle Scholar
  6. Drechsel, H, Tschierske, M, Thieken, A, Jung, G, Zähner, H, Winkelmann, G 1995The carboxylate type siderophore rhizoferrin and its analogs produced by directed fermentationJ Ind Microbiol14105112CrossRefGoogle Scholar
  7. Drechsel, H, Winkelmann, G 1997Iron chelation and siderophoresWinkelmann, GCarrano, CJ eds. Transition Metals in Microbial MetabolismHarwood Academic PublishersLondon149Google Scholar
  8. Konetschny-Rapp, S, Jung, G, Meiwes, J, Zähner, H 1990Staphyloferrin A: a structurally new siderophore from staphylococciEur J Biochem1916574CrossRefPubMedGoogle Scholar
  9. Leigh, GJ eds. 1990Nomenclature in Inorganic ChemistryBlackwell Scientific PublicationsOxford, Great BritainGoogle Scholar
  10. Münzinger, M, Taraz, K, Budzikiewicz, H, Drechsel, H, Heymann, P, Winkelmann, G, Meyer, JM 1999S,S-rhizoferrin (enantio-rhizoferrin)–a siderophore of Ralstonia (Pseudomonas) pickettii DSM 6297–the optical antipode of R,R-rhizoferrin isolated from fungiBioMetals12189193CrossRefGoogle Scholar
  11. Thieken, A, Winkelmann, G 1992Rhizoferrin: a complexone type siderophore of the Mucorales and Entomophthorales (Zygomycetes)FEMS Microbiol Lett943742CrossRefGoogle Scholar
  12. Sebulsky, TM, Hohnstein, D, Hunter, MD, Heinrichs, DE 2000Identification and characterization of a membrane permease involved in iron-hydroxamate transport in Staphylococcus aureus J Bacteriol18243944400CrossRefPubMedGoogle Scholar
  13. Winkelmann, G 1992Structures and functions of fungal siderophores containing hydroxamate and complexone type iron binding ligandsMycol. Research96529534CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Institut für Mikrobiologie, Mikrobiologie & BiotechnologieUniversität TübingenTübingenGermany

Personalised recommendations