, Volume 132, Issue 1–2, pp 23–36 | Cite as

Biological nitrogen fixation in a post-volcanic chronosequence from south-central Chile

  • Cecilia A. Pérez
  • Frank M. Thomas
  • Wladimir A. Silva
  • Rodrigo Aguilera
  • Juan J. Armesto


Biological nitrogen fixation is a key ecosystem function incorporating new nitrogen (N) during primary successions. Increasing evidence from tropical and northern temperate forests shows that phosphorus (P) and molybdenum (Mo) either alone or in combination limit the activity of free-living diazotrophs. In this study, we evaluated the effects of Mo, P, and carbon (C) addition, either singly or in combination, and moisture, on diazotrophic activity in a post-volcanic forest chronosequence in south-fentral Chile. Diazotrophic activity, both free-living (associated with fine litter) and symbiotic (associated with the moss Racomitrium lanuginosum and the cyanolichens Pseudocyphellaria berberina and P. coriifolia), was evaluated by incubation of samples and subsequent acetylene reduction assays conducted in the field and laboratory, in winter, spring and autumn of two consecutive years. Results showed that diazotrophic activity varied with the season of the year (lowest during the drier spring season), successional stage (highest in the maximal stage), and N-fixer community type (highest in symbiotic diazotrophs). In general, C+P+Mo limitation was documented for heterotrophic diazotrophs and P+Mo limitation for symbiotic diazotrophs. Limitation of diazotrophic activity was not associated with soil nutrient and C status in the chronosequence. Strong inhibition of diazotrophic activity by high N addition and by low moisture suggests that reductions in precipitation expected for south-central Chile under climate change, as well as increasing inputs of reactive N from atmospheric deposition due to increasing use of N fertilizers, may drastically alter the composition and functional role of cryptogamic assemblages in native forests.


Free-living diazotrophs Symbiotic diazotrophs C+P+Mo limitation Southern temperate forests 



We gratefully acknowledge the support of Fondo Nacional de Ciencia y Tecnología (Fondecyt) Grant No. 1130353 and Grant IAI-CRN 3005. Corporación Nacional Forestal (CONAF) under the agreement 07/2012/IX allowed us to access Conguillío National Park, Araucarian Region, Chile. JJA, CP, and WS acknowledge the support of Grants PFB-23 (from Conicyt) and P05-002 (from Millennium Scientific Initiative) to the Institute of Ecology and Biodiversity, Chile. We are grateful to two anonymous reviewers and associated editor who greatly helped to improve the original manuscript.

Supplementary material

10533_2016_285_MOESM1_ESM.docx (193 kb)
Supplementary material 1 (DOCX 193 kb)


  1. Ackermann K, Zackrisson O, Rousk J, Jones D, DeLuca TH (2012) N2 fixation in feather mosses is a sensitive indicator of N deposition in boreal forests. Ecosystems 15:986–998CrossRefGoogle Scholar
  2. Barron AR, Wurzburger N, Bellenger JP, Wright SJ, Kraepiel AM, Hedin LO (2008) Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils. Nat Geosci 2:42–45CrossRefGoogle Scholar
  3. Bates ST, Cropsey GW, Caporaso JG, Knight R, Fierer N (2011) Bacterial communities associated with lichen symbiosis. Appl Environ Microbiol 77:1309–1314CrossRefGoogle Scholar
  4. Bellenger JP, Wichard T, Xu Y, Kraepel AML (2011) Essential metals for nitrogen fixation in a free-living N2-fixing bacterium: chelation, homeostasis and high use efficiency. Environ Microbiol 13:1395–1411CrossRefGoogle Scholar
  5. Belnap J (2001) Factors influencing nitrogen fixation and nitrogen release in biological soil crusts. In: Belnap J, Lange OL (eds) Biological soils crusts: structure function and management. Ecol Stud Ser 150. Springer, Berlin, pp 241–261Google Scholar
  6. Benner JW, Vitousek PM (2012) Cyanolichens: a link between the phosphorus and nitrogen cycles in a Hawaiian montane forest. J Trop Ecol 28:73–81CrossRefGoogle Scholar
  7. Brown KA, Harris DF, Wilker MB, Rsamussen A, Khadka N, Hamby H, Keable S, Dukovic G, Peters JW, Seefeldt LC, King PW (2016) Light-driven dinitrogen reduction catalized by a CdS:nitrogenase MoFe protein biohybrid. Science 352:448–450CrossRefGoogle Scholar
  8. Chen G, Lockhart RA (1997) Box-cox transformed linear models: a parameter-based asymptotic approach. Can J Stat 25:517–529CrossRefGoogle Scholar
  9. Cleveland CC, Townsend AR, Schimel DS, Fisher H, Howarth RW, Hedin LO, Perakis SS, Latty EF, Von Fisher JC, Elseroad A, Wasson MF (1999) Global patterns of terrestrial nitrogen (N2) in natural ecosystems. Glob Biogeochem Cycles 13:623–645CrossRefGoogle Scholar
  10. Crews TE, Farrington H, Vitousek PM (2000) Changes in asymbiotic, heterotrophic nitrogen fixation on leaf litter of Metrosideros polymorpha with long term ecosystem development in Hawaii. Ecosystems 3:386–395CrossRefGoogle Scholar
  11. Cusack DF, Silver W, McDowell WH (2009) Biological nitrogen fixation in two tropical forests: ecosystem level patterns and effects of nitrogen fertilization. Ecosystems 12:1299–1315CrossRefGoogle Scholar
  12. De Luca TH, Zackrisson O, Gundale MJ, Nilsson MC (2008) Ecosystem feedbacks and nitrogen fixation in boreal forests. Science 320:1181CrossRefGoogle Scholar
  13. Desai MS, Assig K, Dattagupta S (2013) Nitrogen fixation in distinct microbial niches within a chemoautotrophy-driven cave ecosystem. ISME J 7:2411–2423CrossRefGoogle Scholar
  14. Di Castri F, Hajek F (1995) Bioclimatografía de Chile. Dirección de Investigación. Universidad Católica de ChileGoogle Scholar
  15. Gundale MJ, Gustafsson H, Nilsson MCh (2009) The sensitivity of nitrogen fixation by feathermoss-cyanobacteria association to litter and moisture variability in young and old boreal forests. Can J For Res 39:2542–2549CrossRefGoogle Scholar
  16. Gundale MJ, Nilsson M, Bansal S, Jäderlund A (2012) The interactive effects of temperature and light on biological nitrogen fixation in boreal forests. New Phytol 194:453–463CrossRefGoogle Scholar
  17. Gundale MJ, Bach LH, Nordin A (2013) The impact of simulated chronic nitrogen deposition on the biomass and N2-fixation activity of two boreal feather moss-cyanobacteria associations. Biol Lett 9:20130797CrossRefGoogle Scholar
  18. Halvorson JJ, Franz EH, Smith JL, Black RA (1992) Nitrogenase activity, nitrogen fixation, and nitrogen inputs by lupines at Mount St. Helens. Ecology 73:87–98CrossRefGoogle Scholar
  19. Horstmann JL, Denison WC, Silvester WB (1982) 15N2 fixation and molybdenum enhancement of acetylene reduction by Lobaria spp. New Phytol 92:235–241CrossRefGoogle Scholar
  20. Jean ME, Phalyvong K, Forest-Drolet J, Bellenger JP (2013) Molybdenum and phosphorus limitation of asymbiotic nitrogen fixation in forests of Eastern Canada: influence of vegetative cover and seasonal variability. Soil Biol Biochem 67:140–146CrossRefGoogle Scholar
  21. Lagestrom A, Nilsson MC, Zackrisson O, Wardle DA (2007) Ecosystem input of nitrogen through biological fixation in feather mosses during ecosystem retrogression. Funct Ecol 21:1027–1033CrossRefGoogle Scholar
  22. Marino R, Howarth RW, Chan F, Cole JJ, Likens GE (2003) Sulfate inhibition of molybdenum-dependent nitrogen fixation by planktonic cyanobacteria under seawater conditions: a non-reversible effect. Hydrobiologia 500:277–293CrossRefGoogle Scholar
  23. Marks JA, Pett-Ridge JC, Perakis SS, Allen J, McCune B (2015) Response of the nitrogen-fixing lichen Lobaria pulmonaria to phosphorus, molybdenum, and vanadium. Ecosphere 6:155CrossRefGoogle Scholar
  24. Menge DNL, Hedin LO (2009) Nitrogen fixation in different biogeochemical niches along a 120 000-year chronosequence in New Zealand. Ecology 90:2190–2201CrossRefGoogle Scholar
  25. Myrold DD, Ruess RR, Klug MJ (1999) Dinitrogen fixation. In: Robertson GP, Coleman DC, Bledsoe CS, Sollins P (eds) Standard soil methods for long term ecological research. Oxford University Press, New York, pp 241–257Google Scholar
  26. Oremland RS, Capone DG (1988) Use of specific inhibitors in biogeochemistry and microbial ecology. Adv Microb Ecol 10:285–383CrossRefGoogle Scholar
  27. Park M, Lee H, Hong SG, Kim OS (2013) Endophytic bacterial diversity of an Antarctic moss, Saniona unciniata. Antarct Sci 25:51–54CrossRefGoogle Scholar
  28. Park CH, Kim KM, Elvebakk A, Kim OS, Jeong G, Hong SG (2015) Algal and fungal diversity in Antarctic lichens. J Eukaryot Microbiol 62:196–205CrossRefGoogle Scholar
  29. Paul EA, Clark FE (1989) Soil microbiology and biochemistry. Academic Press, USAGoogle Scholar
  30. Pérez CA, Carmona MR, Aravena JC, Armesto JJ (2004) Successional changes in soil nitrogen availability, non symbiotic nitrogen fixation and C/N ratios in southern Chilean forest ecosystems. Oecologia 140:617–625CrossRefGoogle Scholar
  31. Pérez SE, Pérez CA, Carmona MR, Fariña JM, Armesto JJ (2008) Efectos del fósforo y carbono lábiles en la fijación no-simbiótica del N2 de bosques siempreverdes manejados y no manejados de la Isla de Chiloé, Chile. Revista Chilena de Historia Natural 81:267–278CrossRefGoogle Scholar
  32. Pérez CA, Carmona MR, Fariña JM, Armesto JJ (2009a) Selective logging of lowland evergreen rainforests in Chiloé Island, Chile: effects of changing tree species composition on soil nitrogen transformations. For Ecol Manage 258:1660–1668CrossRefGoogle Scholar
  33. Pérez CA, Carmona MR, Aravena JC, Fariña JM, Armesto JJ (2009b) Environmental controls and patterns of cumulative radial increment of evergreen tree species in montane, temperate rainforests of Chiloé Island, southern Chile. Austral Ecol 34:259–271CrossRefGoogle Scholar
  34. Pérez CA, Aravena JC, Silva WA, Henríquez JM, Fariña JM, Armesto JJ (2014a) Ecosystem development in short-term postglacial chronosequences: N and P limitation in glacier forelands from Santa Inés Island, Magellan Strait. Austral Ecol 39:288–303CrossRefGoogle Scholar
  35. Pérez CA, Thomas FM, Silva WA, Segura B, Gallardo B, Armesto JJ (2014b) Patterns of biological nitrogen fixation during 60.000 years of forest development on volcanic soils from south-central Chile. N Z J Ecol 38(2):189–200Google Scholar
  36. Pérez CA, Aravena JC, Silva WA, McCulloch R, Armesto JJ, Parfitt R (2016) Patterns of ecosystem development in glacial foreland chronosequences: a comparative analysis of Chile and New Zealand. NZ J Bot 54:156–174CrossRefGoogle Scholar
  37. Quintana JMP, Aceituno P (2012) Changes in the rainfall regime along the extratropical west coast of South America (Chile): 30°–43° S. Atmósfera 25:1–22Google Scholar
  38. Reed SC, Cleveland CC, Townsend AR (2007) Controls over leaf litter and soil nitrogen fixation in two lowland tropical rain forests. Biotropica 39:585–592CrossRefGoogle Scholar
  39. Reed SC, Cleveland CC, Townsend AR (2011) Functional ecology of free-living nitrogen fixation: a contemporary perspective. Annu Rev Ecol Syst 42:489–512CrossRefGoogle Scholar
  40. Reed SC, Cleveland CC, Townsend AR (2013) Relationship among phosphorus, molybdenum and free living nitrogen fixation in tropical rainforests: results from observational and experimental analysis. Biogeochemistry 114:135–147CrossRefGoogle Scholar
  41. Riederer-Henderson MA, Wilson PW (1970) Nitrogen fixation by sulphate-reducing bacteria. J Gen Microbiol 61:27–31CrossRefGoogle Scholar
  42. Rousk K, Jones DL, DeLuca TH (2013) Moss-cyanobacteria associations as biogenic sources of nitrogen in boreal forest ecosystems. Front Microbiol 4:150CrossRefGoogle Scholar
  43. Silvester WB (1989) Molybdenum limitation of asymbiotic nitrogen fixation in forests of the Pacific Northwest America. Soil Biol Biochem 21:283–289CrossRefGoogle Scholar
  44. Steubing L, Fangmeier A (1992) Pflanzenökologisches Praktikum. Ulmer, StuttgartGoogle Scholar
  45. Sullivan GM, Feinn R (2012) Using effect size-or why the P value is not enough. J Grad Med Educ. doi: 10.4300/JGME-D-12-00156.1 Google Scholar
  46. Vet R, Artz RA, Carou S, Shaw M, Ro CU, Aas W, Baker A, Bowersox VC, Dentener F, Galy-Lacaux C et al (2014) A global assesment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmos Environ 93:3–100CrossRefGoogle Scholar
  47. Vile MA, Kelman Wieder R, Zivkovic T, Scott K, Vitt DH, Hartsock JA, Iosue CL, Quinn JC, Petix M, Fillingim HP et al (2014) N2-fixation by methanotrophs sustain carbon and nitrogen accumulation in pristine peatlands. Biogeochemistry 121:317–328CrossRefGoogle Scholar
  48. Vistoso E (2005) Factores que influencia la dinámica del molibdeno en el sistema suelo-planta en Andisoles del sur de Chile. Ph D Thesis, Universidad de la Frontera, Temuco, ChileGoogle Scholar
  49. Vistoso E, Theng BKG, Bolan NS, Parfitt RL, Mora ML (2012) Competitive sorption of molybdate and phosphate in Andisols. J Soil Sci Plant Nutr 12:59–72CrossRefGoogle Scholar
  50. Vitousek PM, Hobbie S (2000) Heterotrophic nitrogen fixation in decomposing litter: patterns and regulation. Ecology 81:2366–2376CrossRefGoogle Scholar
  51. Walker LR, Del Moral R (2003) Primary succession and ecosystem rehabilitation. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  52. Walter C, Pérez CA, Thomas FM (2016) Weather or weathering? Growth of Nothofagus dombeyi on volcanic soils differing in nitrogen and phosphorus concentrations. J Plant Ecol 9:596–607CrossRefGoogle Scholar
  53. Wurzburger N, Bellenger JP, Kraepiel AML, Hedin LO (2012) Molybdenum and phosphorus interact to constrain asymbiotic nitrogen fixation in tropical forests. PLoS ONE 7(3):e33710. doi: 10.1371/journal.pone.0033710 CrossRefGoogle Scholar
  54. Yelenik S, Perakis S, Hibbs D (2013) Regional constraints to biological nitrogen fixation in post-fire communities. Ecology 94:739–750CrossRefGoogle Scholar
  55. Zackrisson O, De Luca TH, Nilsson MC, Sellstadt A, Berglund LM (2004) Nitrogen fixation increases with successional age in boreal forests. Ecology 85:3327–3334CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Cecilia A. Pérez
    • 1
  • Frank M. Thomas
    • 2
  • Wladimir A. Silva
    • 1
  • Rodrigo Aguilera
    • 1
  • Juan J. Armesto
    • 1
    • 3
  1. 1.Institute of Ecology and BiodiversitySantiagoChile
  2. 2.Faculty of Regional and Environmental Sciences, GeobotanyUniversität TrierTrierGermany
  3. 3.Universidad Católica de ChileSantiagoChile

Personalised recommendations