, Volume 130, Issue 1–2, pp 159–176 | Cite as

Phosphorus release from the drying and reflooding of diverse shallow sediments

  • Lauren E. Kinsman-Costello
  • Stephen K. Hamilton
  • Jonathan M. O’Brien
  • Jay T. Lennon


Phosphorus (P) retention is an important ecosystem service provided by sediments and soils. However, when shallow aquatic sediments and poorly drained soils dry and re-flood, they can be a source, rather than a sink, of P. Using experimental drying and re-flooding in the laboratory, we assessed the resultant sediment–water P exchange in a biogeochemically diverse set of sediments from 16 sites in Michigan. The direction and magnitude of P exchange to pore waters and surface waters upon re-flooding varied among sediments. Different sediment properties were related to P release to pore water than to P release to overlying surface water, suggesting that different processes control two phases of sediment P release: mobilization from solid to dissolved forms in the sediment pore water; and movement of dissolved P from pore water into overlying surface water. We observed especially high P release in dried and re-flooded sediments with high amounts of loosely sorbed phosphate, suggesting that drained sediments with a legacy of high P loads will be most likely to release P and experience internal eutrophication when re-flooded. The differential responses of sediments suggest that aquatic ecosystem restoration and management for nutrient removal must be evaluated with site-specific knowledge of sediment and soil biogeochemistry.


Water level fluctuations Wetland restoration Sediment Soil Phosphorus Iron 



We are grateful to Henning S. Jensen and colleagues at the University of Southern Denmark for valuable advice on sequential phosphorus extraction techniques. Thanks to David Weed, Jen Pham, Laura Podzikowski, David Kinsman, Steve Robbins, Brandon Kovnat, Rob Davis, Paige Howell, David Costello, and Megan Lowenberg for lab and field support. Allen Burton and his lab at the University of Michigan provided protocols and logistical support for measuring acid volatile sulfides in sediments. Early drafts of this manuscript were improved by comments from Alan Steinman and R. Jan Stevenson. This research was funded by National Science Foundation Division of Environmental Biology grants 0743402, 0423627, 0910008 and 1027253.

Supplementary material

10533_2016_250_MOESM1_ESM.pdf (722 kb)
Supplementary material 1 (PDF 722 kb)


  1. Allen HE, Fu G, Boothman W, et al (1991) Determination of acid volatile sulfides (AVS) and simultaneously extracted metals in sediment: draft analytical method for determination of acid volatile sulfide in sediment.US Environmental Protection Agency, WashingtonGoogle Scholar
  2. Andersen JM (1975) An ignition method for determination of total phosphorus in lake sediments. Water Res 10:329–331. doi: 10.1016/0043-1354(76)90175-5 CrossRefGoogle Scholar
  3. Ardón M, Montanari S, Morse JL et al (2010) Phosphorus export from a restored wetland ecosystem in response to natural and experimental hydrologic fluctuations. J Geophys Res 115:G04031. doi: 10.1029/2009JG001169 CrossRefGoogle Scholar
  4. Baldwin DS (1996) Effects of exposure to air and subsequent drying on the phosphate sorption characteristics of sediments from a eutrophic reservoir. Limnol Oceanogr 41:1725–1732CrossRefGoogle Scholar
  5. Baldwin DS (2013) Organic phosphorus in the aquatic environment. Environ Chem 10:439–454. doi: 10.1071/EN13151 CrossRefGoogle Scholar
  6. Baldwin DS, Mitchell AM (2000) The effects of drying and re-flooding on the sediment and soil nutrient dynamics of lowland river-floodplain systems: a synthesis. Regulated Rivers 16:457–467CrossRefGoogle Scholar
  7. Banach AM, Banach K, Visser EJW, Stępniewska Z, Smits AJM, Roelofs JGM, Lamers LPM (2009) Effects of summer flooding on floodplain biogeochemistry in Poland; implications for increased flooding frequency. Biogeochemistry 92:247–262. doi: 10.1007/s10533-009-9291-2 CrossRefGoogle Scholar
  8. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300Google Scholar
  9. Birch HF (1960) Nitrification in soils after different periods of dryness. Plant Soil 12:81–96CrossRefGoogle Scholar
  10. Bostic EM, White JR (2007) Soil phosphorus and vegetation influence on wetland phosphorus release after simulated drought. Soil Sci Soc Am J 71:238. doi: 10.2136/sssaj2006.0137 CrossRefGoogle Scholar
  11. Boström B, Andersen JM, Fleischer S, Jansson M (1988) Exchange of phosphorus across the sediment-water interface. Hydrobiologia 170:229–244. doi: 10.1007/BF00024907 CrossRefGoogle Scholar
  12. Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociol Methods Res 33:261–304. doi: 10.1177/0049124104268644 CrossRefGoogle Scholar
  13. Caraco NF, Cole JJ, Likens GE (1989) Evidence for sulfate-controlled phosphorus release from sediments of aquatic systems. Nature 341:316–318. doi: 10.1038/341316a0 CrossRefGoogle Scholar
  14. Carpenter SR, Caraco NF, Correll DL et al (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568CrossRefGoogle Scholar
  15. Corstanje R, Reddy KR (2004) Response of biogeochemical indicators to a drawdown and subsequent reflood. J Environ Qual 33:2357–2366. doi: 10.2134/jeq2004.2357 CrossRefGoogle Scholar
  16. Coveney MF, Stites DL, Lowe EF et al (2002) Nutrient removal from eutrophic lake water by wetland filtration. Ecol Eng 19:141–159. doi: 10.1016/S0925-8574(02)00037-X CrossRefGoogle Scholar
  17. Darke AK, Walbridge MR (2000) Al and Fe biogeochemistry in a floodplain forest: implications for P retention. Biogeochemistry 51:1–32. doi: 10.1023/A:1006302600347 CrossRefGoogle Scholar
  18. De Groot CJ, Fabre A (1993) The impact of desiccation of a freshwater marsh (Garcines Nord, Camargue, France) on sediment-water-vegetation interactions Part 3: the fractional composition and the phosphate adsorption characteristics of the sediment. Hydrobiologia 252:105–116CrossRefGoogle Scholar
  19. de Vicente I, Andersen FO, Hansen HCB, Cruz-Pizarro L, Jensen HS (2010) Water level fluctuations may decrease phosphate adsorption capacity of the sediment in oligotrophic high mountain lakes. Hydrobiologia 651:253–264CrossRefGoogle Scholar
  20. Dieter D, Herzog C, Hupfer M (2015) Effects of drying on phosphorus uptake in re-flooded lake sediments. Environ Sci Pollut Res 22:17065–17081CrossRefGoogle Scholar
  21. Dunne EJ, Smith J, Perkins DB et al (2007) Phosphorus storages in historically isolated wetland ecosystems and surrounding pasture uplands. Ecol Eng 31:16–28. doi: 10.1016/j.ecoleng.2007.05.004 CrossRefGoogle Scholar
  22. Dunne EJ, Coveney MF, Marzolf ER et al (2012) Efficacy of a large-scale constructed wetland to remove phosphorus and suspended solids from Lake Apopka, Florida. Ecol Eng 42:90–100. doi: 10.1016/j.ecoleng.2012.01.019 CrossRefGoogle Scholar
  23. Forsmann DM, Kjaergaard C (2014) Phosphorus release from anaerobic peat soils during convective discharge—Effect of soil Fe: P molar ratio and preferential flow. Geoderma 223–225:21–32. doi: 10.1016/j.geoderma.2014.01.025 CrossRefGoogle Scholar
  24. Geurts JJM, Smolders AJP, Verhoeven JTA et al (2008) Sediment Fe:PO4 ratio as a diagnostic and prognostic tool for the restoration of macrophyte biodiversity in fen waters. Freshw Biol 53:2101–2116. doi: 10.1111/j.1365-2427.2008.02038.x CrossRefGoogle Scholar
  25. Graham MH (2003) Confronting multicollinearity in ecological multiple regression. Ecology 84:2809–2815CrossRefGoogle Scholar
  26. Hamilton SK, Bruesewitz DA, Horst GP et al (2009) Biogenic calcite–phosphorus precipitation as a negative feedback to lake eutrophication. Can J Fish Aquat Sci 66:343–350. doi: 10.1139/F09-003 CrossRefGoogle Scholar
  27. Hooda PS, Rendel AR, Edwards AC et al (2000) Relating soil phosphrous indices to potential phosphorus release to water. J Environ Qual 29:1166–1171. doi: 10.2134/jeq2000.00472425002900040018x CrossRefGoogle Scholar
  28. Hupfer M, Lewandowski J (2008) oxygen controls the phosphorus release from lake sediments—a long-lasting paradigm in limnology. Int Rev Hydrobiol 93:415–432. doi: 10.1002/iroh.200711054 CrossRefGoogle Scholar
  29. Jensen HS, Kristensen P, Jeppesen E, Skytthe A (1992) Iron:phosphorus ratio in surface sediment as an indicator of phosphate release from aerobic sediments in shallow lakes. Hydrobiologia 235–236:731–743. doi: 10.1007/BF00026261 CrossRefGoogle Scholar
  30. Johnston CA (1991) Sediment and nutrient retention by freshwater wetlands: effects on surface water quality. Crit Rev Environ Control 21:491–565. doi: 10.1080/10643389109388425 CrossRefGoogle Scholar
  31. Kadlec RH, Wallace SD (2009) Treatment Wetlands, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  32. Kinsman-Costello LE, O’Brien J, Hamilton SK (2014) Re-flooding a historically drained wetland leads to rapid sediment phosphorus release. Ecosystems 17:641–656. doi: 10.1007/s10021-014-9748-6 CrossRefGoogle Scholar
  33. Lamers LPM, Tomassen HBM, Roelofs JGM (1998) Sulfate-induced eutrophication and phytotoxicity in freshwater wetlands. Environ Sci Technol 32:199–205. doi: 10.1021/es970362f CrossRefGoogle Scholar
  34. Loeb R, Lamers LPM, Roelofs JGM (2008) Prediction of phosphorus mobilisation in inundated floodplain soils. Environ Pollut 156:325–331. doi: 10.1016/j.envpol.2008.02.006 CrossRefGoogle Scholar
  35. Lovley DR, Phillips EJ (1987) Rapid assay for microbially reducible ferric iron in aquatic sediments. Appl Environ Microbiol 53:1536–1540. doi: 10.1007/BF01611203 Google Scholar
  36. Lucassen E, Smolders A, van de Crommenacker J, Roelofs J (2004) Effects of stagnating sulphate-rich groundwater on the mobilty of phosphate in freshwater wetlands: a field experiment. Arch für Hydrobiol 160:117–131CrossRefGoogle Scholar
  37. Manny BA, Johnson WC, Wetzel RG (1994) Nutrient additions by waterfowl to lakes and reservoirs: predicting their effects on productivity and water quality. Hydrobiologia 279–280:121–132. doi: 10.1007/bf00027847 CrossRefGoogle Scholar
  38. Marsden MW (1989) Lake restoration by reducing external phosphorus loading: the influence of sediment phosphorus release. Freshw Biol 21:139–162. doi: 10.1111/j.1365-2427.1989.tb01355.x CrossRefGoogle Scholar
  39. McKeague JA, Day JH (1966) Dithionite- and oxalate-extractable Fe and Al as aids indifferentiating various classes of soils. Can J Soil Sci 46:13–22. doi: 10.4141/cjss66-003 CrossRefGoogle Scholar
  40. McLauchlan K (2006) The nature and longevity of agricultural impacts on soil carbon and nutrients: a review. Ecosystems 9:1364–1382. doi: 10.1007/s10021-005-0135-1 CrossRefGoogle Scholar
  41. Mermillod-Blondin F, Rosenberg R (2006) Ecosystem engineering: the impact of bioturbation on biogeochemical processes in marine and freshwater benthic habitats. Aquat Sci 68:434–442. doi: 10.1007/s00027-006-0858-x CrossRefGoogle Scholar
  42. Mortimer CH (1941) The exchange of dissolved substances between mud and water in lakes. J Ecol 29:280–329CrossRefGoogle Scholar
  43. Mortimer CH (1942) The exchange of dissovled substances between mud and water in lakes. J Ecol 30:147–201CrossRefGoogle Scholar
  44. Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36CrossRefGoogle Scholar
  45. Olila OG, Reddy KR, Stites DL (1997) Influence of draining on soil phosphorus forms and distribution in a constructed wetland. Ecol Eng 9:157–169CrossRefGoogle Scholar
  46. Paludan C, Jensen HS (1995) Sequential extraction of phosphorus in freshwater wetland and lake sediment: significance of humic acids. Wetlands 15:365–373. doi: 10.1007/BF03160891 CrossRefGoogle Scholar
  47. Pant HK, Reddy KR (2003) Potential internal loading of phosphorus in a wetland constructed in agricultural land. Water Res 37:965–972. doi: 10.1016/S0043-1354(02)00474-8 CrossRefGoogle Scholar
  48. Pettersson K, Boström B, Jacobsen OS (1988) Phosphorus in sediments—speciation and analysis. Hydrobiologia 170:91–101. doi: 10.1007/BF00024900 CrossRefGoogle Scholar
  49. Pinheiro JC, Bates D (2004) Mixed effects models in S and S-Plus. Springer, New YorkGoogle Scholar
  50. Pryor SC, Scavia D, Downer C et al (2014) Midwest (Chap 18). In: Melillo J, Richmond T, Yohe G (eds) Climate change impacts in the United States: the third national climate assessment. US Global Change Research Program, Washington, pp 418–440Google Scholar
  51. Qiu S, McComb A (1994) Effects of oxygen concentration on phosphorus release from reflooded air-dried wetland sediments. Mar Freshw Res Freshw Res 45:1319–1328. doi: 10.1071/MF9941319 CrossRefGoogle Scholar
  52. Qiu S, McComb AJ (2002) Interrelations between iron extractability and phosphate sorption in reflooded air-dried sediments. Hydrobiologia 472:39–44. doi: 10.1023/A:1016317100164 CrossRefGoogle Scholar
  53. Reddy KR, DeLaune RD (2008) Biogeochemistry of wetlands: science and applications. CRC Press, Boca RatonCrossRefGoogle Scholar
  54. Reitzel K (2005) Separation of aluminum bound phosphate from iron bound phosphate in freshwater sediments by a sequential extraction procedure. In: 4th International Symposium on Phosphate in Sediments, BackhuysGoogle Scholar
  55. Reitzel K, Ahlgren J, Gogoll A et al (2006) Characterization of phosphorus in sequential extracts from lake sediments using 31P nuclear magnetic resonance spectroscopy. Can J Fish Aquat Sci 63:1686–1699. doi: 10.1139/f06-070 CrossRefGoogle Scholar
  56. Richardson CJ (1985) Mechanisms controlling phosphorus retention capacity in freshwater wetlands. Science 228:1424–1427. doi: 10.1126/science.228.4706.1424 CrossRefGoogle Scholar
  57. Roden EE, Edmonds JW (1997) Phosphate mobilization in iron-rich anaerobic sediments: microbial Fe(III) oxide reduction versus iron-sulfide formation. Arch Fur Hydrobiol 139:347–378Google Scholar
  58. Sah R, Mikkelsen D (1989) Phosphorus Behavior in Flooded-Drained Soils. 1. Effects on Phosphorus. Soil Sci Soc Am J 53:1718–1722. doi: 10.2136/sssaj1989.03615995005300060020x CrossRefGoogle Scholar
  59. Schimel J, Balser TC, Wallenstein M (2007) Microbial stress-response physiology and its implications for ecosystem function. Ecology 88:1386–1394. doi: 10.1890/06-0219 CrossRefGoogle Scholar
  60. Shukla SS, Syers JK, Williams JDH et al (1971) Sorption of inorganic phosphate by lake sediments. Soil Sci Soc Am Proc 35:244–249CrossRefGoogle Scholar
  61. Smolders A, Lamers L, Lucassen E et al (2006a) Internal eutrophication: how it works and what to do about it—a review. Chem Ecol 22:93–111CrossRefGoogle Scholar
  62. Smolders AJP, Moonen M, Zwaga K et al (2006b) Changes in pore water chemistry of desiccating freshwater sediments with different sulphur contents. Geoderma 132:372–383. doi: 10.1016/j.geoderma.2005.06.002 CrossRefGoogle Scholar
  63. Steinman AD, Ogdahl ME (2011) Does converting agricultural fields to wetlands retain or release P? J North Am Benthol Soc 30:820–830. doi: 10.1899/10-106.1 CrossRefGoogle Scholar
  64. Tang Y, Van Kempen MML, Van der Heid T, Manschot JJA, Roelofs JGM, Lamers LPM, Smolders AJP (2016) A tool for easily predicting short-term phosphorus mobilization from flooded soils. Ecol Eng 94:1–6. doi: 10.1016/j.ecoleng.2016.05.046 CrossRefGoogle Scholar
  65. Team RDC (2011) R: A language and environment for statistical computing, ViennaGoogle Scholar
  66. Turner BL, Haygarth PM (2001) Phosphorus solubilization in rewetted soils. Nature 411:258CrossRefGoogle Scholar
  67. Twinch AJ (1987) Phosphate exchange characteristics of wet and dried sediment samples from a hypertrophic reservoir: implications for the measurements of sediment phosphorus status. Water Res 21:1225–1230CrossRefGoogle Scholar
  68. Verhoeven KJF, Simonsen KL, McIntyre LM (2005) Implementing false discovery rate control: increasing your power. Oikos 108:643–647. doi: 10.1111/j.0030-1299.2005.13727.x CrossRefGoogle Scholar
  69. Walbridge MR, Richardson CJ, Swank WT (1991) Vertical distribution of biological and geochemical phosphorus subcycles in two southern Appalachian forest soils. Biogeochemistry 13:61–85CrossRefGoogle Scholar
  70. Wetzel RG (2001) Limnology: lake and river ecosystems, 3rd edn. Academic Press, San DiegoGoogle Scholar
  71. Whitmire SL, Hamilton SK (2005) Rapid removal of nitrate and sulfate in freshwater wetland sediments. J Environ Qual 34:2062–2071. doi: 10.2134/jeq2004.0483 CrossRefGoogle Scholar
  72. Williams JDH, Syers JK, Shukla SS et al (1971) Levels of inorganic and total phosphorus in lake sediments as related to other sediment parameters. Environ Sci Technol 5:1113–1120. doi: 10.1021/es60058a001 CrossRefGoogle Scholar
  73. Wilson J, Baldwin DS (2008) Exploring the “Birch effect” in reservoir sediments: influence of inundation history on aerobic nutrient release. Chem Ecol 24:379–386. doi: 10.1080/02757540802497582 CrossRefGoogle Scholar
  74. Zak D, Wagner C, Payer B et al (2010) Phosphorus mobilization in rewetted fens: the effect of altered peat properties and implications for their restoration. Ecol Appl 20:1336–1349. doi: 10.1890/08-2053.1 CrossRefGoogle Scholar
  75. Zhang Y, Lin X, Werner W (2003) The effect of soil flooding on the transformation of Fe oxides and the adsorption/desorption behavior of phosphate. J Plant Nutr Soil Sci 166:68–75. doi: 10.1002/jpln.200390014 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.W.K. Kellogg Biological Station, Michigan State UniversityEast LansingUSA
  2. 2.Department of Biological SciencesKent State UniversityKentUSA
  3. 3.Department of BiologyCanisius CollegeBuffaloUSA
  4. 4.Department of BiologyIndiana UniversityBloomingtonUSA

Personalised recommendations