Advertisement

Biogeochemistry

, Volume 130, Issue 1–2, pp 103–116 | Cite as

Tree taxa and pyrolysis temperature interact to control the efficacy of pyrogenic organic matter formation

  • Pierre-Joseph Hatton
  • Subhasish Chatterjee
  • Timothy R. Filley
  • Keyvan Dastmalchi
  • Alain F. Plante
  • Samuel Abiven
  • Xiaodong Gao
  • Caroline A. Masiello
  • Steven W. Leavitt
  • Knute J. Nadelhoffer
  • Ruth E. Stark
  • Jeffrey A. Bird
Article

Abstract

We know little about how shifts in tree species distribution and increases in forest fire intensity could affect the formation of pyrogenic organic matter (PyOM) or charcoal, one of the most important and persistent soil organic matter pools. This limitation arises partly because the role of the precursor wood in controlling PyOM formation is unclear. The current study shows how tree species and pyrolysis temperature (200, 300, 450 and 600 °C) interact to control the physicochemical structure of the PyOM experimentally derived from 13C/15N-enriched Pinus banksania and Acer rubrum, two important co-occurring gymnosperm and angiosperm tree species from North American boreal-temperate ecotones. Complementary physicochemical and thermodynamic measurements revealed different susceptibilities of the two wood species to charring, with PyOM intermediates formed at lower temperature from the pine, indicating that the tree species regulated the efficacy of PyOM formation. Particularly, we report high-resolution data describing the comprehensive chemical architecture of PyOM (both –C and –N) as they are formed, which are complemented by unique molecular-level insights on their labile fractions. We posit that the tree species and pyrolysis temperature interaction reflects distinctive anatomical features of the two major tree taxa, including greater effective porosity in gymnosperms that promote the loss of volatiles and enhance the heat exposure of bio-components. This study points to a higher temperature threshold for PyOM production in maple forests compared with pine forests, resulting in potentially more degradable and less sorbtive PyOM in ecotones dominated by the former species.

Keywords

Char Black C Wood NMR TMAH 

Abbreviations

PyOM

Pyrogenic organic matter

JP

Jack pine

RM

Red maple

BET–N2 SA

Brunauer-Emmett-Teller–N2 surface area

ssNMR

Solid-state nuclear magnetic resonance

CPMAS

Cross polarization-magic-angle spinning

DPMAS

Direct polarization-magic-angle spinning

MAS

Magic-angle spinning

DRIFT

Diffuse reflectance infrared Fourier transmission

13C-TMAH

13C-labeled tetramethylammonium hydroxide

Notes

Acknowledgments

This research was supported by the National Science Foundation (DEB-1127253). The NMR resources were supported by The City College of New York (CCNY) and the CUNY Institute of Macromolecular Assemblies, with infrastructural assistance provided by the National Institutes of Health through the National Institute on Minority Health and Health Disparities (8G12 MD007603). We are grateful to F. Santos for growing the RM, B. Dewey for performing the proximate C analyses and to the UC Davis Stable Isotope Facility for isotope analyses. We thank the anonymous reviewers for their constructive comments.

Author Contributions

JAB, TRF and KJN conceived and designed the study. PJH analyzed the data and was the primary author of the manuscript. RES and SC designed the NMR experiments, which were performed and analyzed by SC, KD, and RES. TRF did the 13C-TMAH measurements. AFP did the thermal analyses. SA did the DRIFT measurements. XG and CM did the pycnometry and SA measurements. SL did the cellulose extractions. The manuscript was written through contributions of all authors. All authors contributed to interpreting the data and editing the manuscript. All authors have given approval to the final version of the manuscript.

Funding Sources

National Science Foundation (DEB-1127253).

Supplementary material

10533_2016_245_MOESM1_ESM.docx (35 kb)
Supplementary material 1 (DOCX 34 kb)
10533_2016_245_MOESM2_ESM.docx (17 kb)
Supplementary material 2 (DOCX 16 kb)
10533_2016_245_MOESM3_ESM.docx (46 kb)
Supplementary material 3 (DOCX 46 kb)
10533_2016_245_MOESM4_ESM.docx (45 kb)
Supplementary material 4 (DOCX 44 kb)
10533_2016_245_MOESM5_ESM.docx (124 kb)
Supplementary material 5 (DOCX 124 kb)
10533_2016_245_MOESM6_ESM.docx (84 kb)
Supplementary material 6 (DOCX 83 kb)
10533_2016_245_MOESM7_ESM.docx (40 kb)
Supplementary material 7 (DOCX 40 kb)
10533_2016_245_MOESM8_ESM.pdf (73 kb)
Supplementary material 8 (PDF 73 kb)
10533_2016_245_MOESM9_ESM.pdf (186 kb)
Supplementary material 9 (PDF 186 kb)
10533_2016_245_MOESM10_ESM.pdf (294 kb)
Supplementary material 10 (PDF 294 kb)
10533_2016_245_MOESM11_ESM.pdf (135 kb)
Supplementary material 11 (PDF 135 kb)
10533_2016_245_MOESM12_ESM.pdf (165 kb)
Supplementary material 12 (PDF 165 kb)

References

  1. Ascough PL, Bird MI, Wormald P, Snape CE, Apperley D (2008) Influence of production variables and starting material on charcoal stable isotopic and molecular characteristics. Geochim Cosmochim Acta 72:6090–6102CrossRefGoogle Scholar
  2. Baldock JA, Smernik RJ (2002) Chemical composition and bioavailability of thermally, altered pinus resinosa (red pine) wood. Org Geochem 33:1093–1109CrossRefGoogle Scholar
  3. Barnes BV (2009) Tree response to ecosystem change at the landscape level in Eastern North America. Forstarchiv 80:76–89Google Scholar
  4. Barnes RT, Gallagher ME, Masiello CA, Liu Z, Dugan B (2014) Biochar-induced changes in soil hydraulic conductivity and dissolved nutrient fluxes constrained by laboratory experiments. PLoS One 9(9):e108340CrossRefGoogle Scholar
  5. Beall FC, Eickner HW (1970) Thermal degradation of wood components: a review of the literature. In: USDA Forest service (ed) FLP 130, p 1–29Google Scholar
  6. Beaumont O, Schwob Y (1984) Influence of physical and chemical parameters on wood pyrolysis. Ind Eng Chem Res 23:627Google Scholar
  7. Bird JA, Torn MS (2006) Fine roots versus needles: a comparison of 13C and 15N dynamics in a ponderosa pine forest soil. Biogeochemistry 79(3):361–382CrossRefGoogle Scholar
  8. Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T, DeAngelo BJ, Flanner MG, Ghan S, Karcher B, Koch D, Kinne S, Kondo Y, Quinn PK, Sarofim MC, Schultz MG, Schultz M, Venkataraman C, Zhang H, Zhang S, Bellouin N, Guttikunda SK, Hopke PK, Jacobson MZ, Kaiser JW, Kilmont Z, Lohmann U, Schwarz JP, Schindell D, Storelvmo T, Warren SG, Zender CS (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res Atmos 118:5380–5552CrossRefGoogle Scholar
  9. Bredu M, Vasile C (2010) Thermal alteration of lignin—a review. Cellul Chem Technol 44(9):353–363Google Scholar
  10. Brewer CE, Chuang VJ, Masiello CA, Gonnermann H, Gao X, Dugan B, Driver LE, Panzacchi P, Zygourakis K, Davies CA (2014) New approaches to measuring biochar density and porosity. Biomass Bioenergy 66:176–185CrossRefGoogle Scholar
  11. Chatterjee S, Santos F, Abiven S, Itin B, Stark RE, Bird JA (2012) Elucidating the chemical structure of pyrogenic organic matter by combining magnetic resonance, mid-infrared spectroscopy and mass spectrometry. Org Geochem 51:35–44CrossRefGoogle Scholar
  12. Chefetz B, Chen Y, Clapp CE, Hatcher PG (2000) Characterization of organic matter in soils by thermochemolysis using tetramethylammonium hydroxide (TMAH). Soil Sci Soc Am J 64:583–589CrossRefGoogle Scholar
  13. Davis MB, Shaw RG (2001) Range shifts and adaptive responses to quaternary climate change. Science 292(5517):673–679CrossRefGoogle Scholar
  14. DeLuca TH, MacKenzie MD, Gundale MJ, Holben WE (2006) Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests. Soil Sci Soc Am J 70(2):448–453CrossRefGoogle Scholar
  15. Di Blasi C (2008) Modeling chemical and physical processes of wood and biomass pyrolysis. Prog Energy Combust Sci 34:47–90CrossRefGoogle Scholar
  16. FAO (2010) Global forest resources assessement. In: FAO, RomeGoogle Scholar
  17. Fernández JM, Cm Peltre, Craine JM, Plante AF (2012) Improved characterization of soil organic matter by thermal analysis using CO2/H2O evolved gas analysis. Environ Sci Technol 46:8921–8927CrossRefGoogle Scholar
  18. Filley TR, Minard RD, Hatcher PG (1999) Tetramethylammonium hydroxide (TMAH) thermochemolysis: proposed mechanisms based upon the application of 13C-labeled TMAH to a synthetic model lignin dimer. Org Geochem 30(7):607–621CrossRefGoogle Scholar
  19. Filley TR, Nierop KGJ, Wang Y (2006) The contribution of polyhydroxyl aromatic compounds to tetramethylammonium hydroxide lignin-based proxies. Org Geochem 37:711–727CrossRefGoogle Scholar
  20. Fung BM, Khitrin AK, Ermolaev K (2000) An improved broadband decoupling sequence for liquid crystals and solids. J Magn Reson 142:97–101CrossRefGoogle Scholar
  21. Gärdenas AI, Agren GI, Bird JA, Clarholm M, Hallin S, Ineson P, Katterer T, Knicker H, Nilsson SI, Nasholm T, Ogle S, Paustian K, Persson T, Stendahl J (2011) Knowledge gaps in soil carbon and nitrogen interactions—From molecular to global scale. Soil Biol Biochem 43(4):702–717CrossRefGoogle Scholar
  22. Giudicianni P, Cardone G, Ragucci R (2013) Cellulose, hemicellulose and lignin slow steam pyrolysis: thermal decomposition of biomass components mixtures. J Anal Appl Pyrol 100:213–222CrossRefGoogle Scholar
  23. Gray J, Thompson P (1977) Climatic information from 18O/16O analysis of cellulose, lignin and whole wood from tree rings. Nature 270:708–709CrossRefGoogle Scholar
  24. Hammes K, Smernik RJ, Skjemstad JO, Herzog A, Vogt UF, Schmidt MWI (2006) Synthesis and characterisation of laboratory-charred grass straw (Oryza sativa) and chestnut wood (Castanea sativa) as reference materials for black carbon quantification. Org Geochem 37:1629–1633CrossRefGoogle Scholar
  25. Hammes K, Schmidt MWI, Smernik RJ, Currie LA, Ball WP, Nguyen TH, Louchouarn P, Houel S, Gustafsson O, Elmquist M, Cornelissen G, Skjemstad JO, Masiello CA, Song J, Peng P, Mitra S, Dunn JC, Hatcher PG, Hockaday WC, Smith DM, Hartkopf-Froder C, Bohmer A, Luer B, Huebert BJ, Amelung W, Brodowski S, Huang L, Zhang W, Gschwend PM, Flores-Cervantes DX, Largeau C, Rouzaud JN, Rumpel C, Guggenberger G, Kaiser K, Rodionov A, Gonzalez-Vila FJ, Gonzalez-Perez JA, de la Rosa JM, Manning DAC, Lopez-Capel E, Ding L (2007) Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere. Global Biogeochem Cycles 21(GB3016):1–18Google Scholar
  26. Hammes K, Torn MS, Lapenas AG, Schmidt MWI (2010) Centennial black carbon turnover observed in a Russian steppe soil. Biogeosciences 5:1339–1350CrossRefGoogle Scholar
  27. Harvey OR, Kuo L-J, Zimmermann AR, Louchouarn P, Amonette JE, Herbert BE (2012) An index-based approach to assessing recalcitrance and soil carbon sequestration potential of engineered black carbons (biochars). Environ Sci Technol 46:1415–1421CrossRefGoogle Scholar
  28. IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Cambridge University Press, Cambridge, pp 1132Google Scholar
  29. Jaffé R, Ding Y, Niggemann J, Vähätalo AV, Stubbins A, Spencer RGM, Campbell J, Dittmar T (2013) Global charcoal mobilization from soils via dissolution and riverine transport to the oceans. Science 340:345–347CrossRefGoogle Scholar
  30. Keiluweit M, Nico PS, Johnson MG, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44(4):1247–1253CrossRefGoogle Scholar
  31. Knicker H (2007) How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 85:91–118CrossRefGoogle Scholar
  32. Knicker H (2011a) Pyrogenic organic matter in soil: its origin and occurrence, its chemistry and survival in soil environments. Quatern Int 243:251–263CrossRefGoogle Scholar
  33. Knicker H (2011b) Soil organic N—An under-rated player for C sequestration in soils? Soil Biol Biochem 43(6):1118–1129CrossRefGoogle Scholar
  34. Knicker H, Hilscher A, Gonzalez-Vila FJ, Almendros G (2008) A new conceptual model for the structural properties of char produced during vegetation fires. Org Geochem 39:935–939CrossRefGoogle Scholar
  35. Kuo L-J, Herbert BE, Louchouarn P (2008) Can levoglucosan be used to characterize and quantify char/charcoal black carbon in environmental media? Org Geochem 39:1466–1478CrossRefGoogle Scholar
  36. Leavitt SW, Danzer SR (1993) Method for batch processing small wood samples to holocellulose for stable-carbon isotope analysis. Anal Chem 65(1):87–89CrossRefGoogle Scholar
  37. Lehmann J (2007) Bio-energy in the black. Front Ecol Environ 5(7):381–387CrossRefGoogle Scholar
  38. Masiello CA (2004) New directions in black carbon organic geochemistry. Mar Chem 92:201–213CrossRefGoogle Scholar
  39. Masiello CA, Louchouarn P (2013) Fire in the ocean. Science 340:287–288CrossRefGoogle Scholar
  40. Masiello CA, Chen Y, Gao X, Liu S, Cheng H-Y, Bennett MR, Rudgers JA, Wagner DS, Zygourakis K, Silberg JJ (2013) Biochar and microbial signaling: production conditions determine effects on microbial communication. Environ Sci Technol 47:11496–11503CrossRefGoogle Scholar
  41. McBeath AV, Smernik RJ (2009) Variation in the degree of aromatic condensation of chars. Org Geochem 40:1161–1168CrossRefGoogle Scholar
  42. McBeath AV, Smernik RJ, Krull ES, Lehmann J (2014) The influence of feedstock and production temperature on biochar carbon chemistry: a solid-state 13C NMR study. Biomass Bioenergy 60:121–129CrossRefGoogle Scholar
  43. Metz G, Wu XL, Smith SO (1994) Ramped-Amplitude Cross Polarization in Magic-Angle-Spinning NMR. J Magn Reson 110:219–227CrossRefGoogle Scholar
  44. Newton PF (2012) Simulating site-specific effects of a changing climate on jack pine productivity using a modified variant of the croplanner model. Open J For 2:23–32Google Scholar
  45. Preston CM, Schmidt MWI (2006) Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences 3:397–420CrossRefGoogle Scholar
  46. Randerson JT, Chen Y, van der Werf GR, Rogers BM, Morton DC (2012) Global burned area and biomass burning emissions from small fires. J Geophys Res Biogeosci 117:G04012CrossRefGoogle Scholar
  47. Reich PB, Sendall KM, Rice K, Rich RL, Stefancki A, Hobbie SE, Montgomery RA (2015) Geographic range predicts photosynthetic and growth response to warming in co-occurring tree species. Nat Clim Change 5:148–152CrossRefGoogle Scholar
  48. Ryan KC (2002) Dynamic interactions between forest structure and fire behavior in boreal ecosystems. Silv Finn 36(1):13–39Google Scholar
  49. Ryan MG, Melillo MM, Ricca A (1990) A comparison of methods for determining proximate carbon fractions of forest litter. Canadian J For Res Revue Can Rech For 20:166–171CrossRefGoogle Scholar
  50. Santin C, Doerr SH, Kane ES, Masiello CA, Ohlson M, de la Rosa JM, Preston CM, Dittmar T (2015a) Towards a global assessment of pyrogenic carbon from vegetation. Glob Change Biol 22:76–91CrossRefGoogle Scholar
  51. Santin C, Doerr SH, Preston CM, Gonzalez-Rodriguez G (2015b) Pyrogenic organic matter produced during wildfires can act as a carbon sink. Glob Change Biol 21(4):1621–1633CrossRefGoogle Scholar
  52. Santos F, Torn MS, Bird JA (2012) Biological degradation of pyrogenic organic matter in temperate forest soils. Soil Biol Biochem 51:115–124CrossRefGoogle Scholar
  53. Scheirs J, Camino G, Tumiatti W (2001) Overview of water evolution during the thermal degradation of cellulose. Eur Polymer J 37:933–942CrossRefGoogle Scholar
  54. Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Koegel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478(7367):49–56CrossRefGoogle Scholar
  55. Schneider MPW, Hilf M, Vogt UF, Schmidt MWI (2010) The benzene polycarboxylic acid (BPCA) pattern of wood pyrolyzed between 200°C and 1000°C. Org Geochem 41:1082–1088CrossRefGoogle Scholar
  56. Serra O, Chatterjee S, Figueras M, Molinas M, Stark RE (2014) Deconstructing a plant macromolecular assembly: chemical architecture, molecular flexibility, and mechanical performance of natural and engineered potato suberins. Biomacromolecules 15:799–811CrossRefGoogle Scholar
  57. Singh BP, Cowie AL, Smernik RJ (2012a) Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature. Environ Sci Technol 46:11770–11778CrossRefGoogle Scholar
  58. Singh N, Abiven S, Torn MS, Schmidt MWI (2012b) Fire-derived organic carbon in soil turns over on a centennial scale. Biogeosciences 9:1–11Google Scholar
  59. Smernik RJ, Baldock JA, Oades JM (2002) Impact of remote protonation on 13C CPMAS NMR quantitation of charred and uncharred wood. Solid State Nucl Magn Reson 22:71–82CrossRefGoogle Scholar
  60. Solum MS, Pugmire RJ, Jagtoyen M, Derbyshire F (1995) Evolution of carbon structure in chemically activated wood. Carbon 33(9):1247–1254CrossRefGoogle Scholar
  61. Soucémarianadin LN, Quideau SA, MacKenzie MD, Bernard GM, Wasylishen RE (2013) Laboratory charring conditions affect black carbon properties: a case study from Quebec black spruce forests. Org Geochem 62:46–55CrossRefGoogle Scholar
  62. Soucémarianadin LN, Quideau SA, MacKenzie MD (2014) Pyrogenic carbon stocks and storage mechanisms in podzolic soils of fire-affected Quebec black spruce forests. Geoderma 217–218:118–128CrossRefGoogle Scholar
  63. Sperry JS, Hacke UG, Pitterman J (2006) Size and function in conifer tracheids and angiosper vessels. Am J Bot 10:1490–1500CrossRefGoogle Scholar
  64. Wang Z, McDonald AG, Westerhof RJM, Kersten SRA, Cuba-Torres CM, Ha S, Pecha B, Garcia-Perez M (2013) Effect of cellulose crystallinity on the formation of a liquid intermediate and on product distribution during pyrolysis. J Anal Appl Pyrol 100:56–66CrossRefGoogle Scholar
  65. Werner K, Pommer L, Brostrom M (2014) Thermal decomposition of hemicelluloses. J Anal Appl Pyrol 110:130–137CrossRefGoogle Scholar
  66. Wiedemeier DB, Abiven S, Hockaday WC, Keiluweit M, Kleber M, Masiello CA, McBeath AV, Nico PS, Pyle LA, Schneider MPW, Smernik RJ, Wiesenberg GLB, Schmidt MWI (2015) Aromaticity and degree of aromatic condensation of char. Org Geochem 78:135–143CrossRefGoogle Scholar
  67. Wind RA, Li L, Maciel GE, Wooten JB (1993) Characterization of electron spin exchange interactions in cellulose chars by means of ESR, 1H NMR, and dynamic nuclear polarization. Appl Magn Resonance 5(2):161–176CrossRefGoogle Scholar
  68. Zimmermann AR (2010) Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ Sci Technol 44(4):1295–1301CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Pierre-Joseph Hatton
    • 1
    • 2
  • Subhasish Chatterjee
    • 3
  • Timothy R. Filley
    • 4
  • Keyvan Dastmalchi
    • 3
  • Alain F. Plante
    • 5
  • Samuel Abiven
    • 6
  • Xiaodong Gao
    • 7
  • Caroline A. Masiello
    • 7
  • Steven W. Leavitt
    • 8
  • Knute J. Nadelhoffer
    • 2
  • Ruth E. Stark
    • 3
    • 9
  • Jeffrey A. Bird
    • 1
    • 10
  1. 1.School of Earth and Environmental Sciences, Queens CollegeCity University of New YorkNew YorkUSA
  2. 2.Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborUSA
  3. 3.Department of Chemistry and Biochemistry, City College and CUNY Institute for Macromolecular AssembliesCity University of New YorkNew YorkUSA
  4. 4.Department of Earth, Atmospheric and Planetary Sciences and the Purdue Climate Change Research CenterPurdue UniversityWest LafayetteUSA
  5. 5.Department of Earth and Environmental SciencesUniversity of PennsylvaniaPhiladelphiaUSA
  6. 6.Department of GeographyUniversity of ZurichZurichSwitzerland
  7. 7.Departments of Earth Science, BioSciences, and ChemistryRice UniversityHoustonUSA
  8. 8.Laboratory of Tree-Ring ResearchUniversity of ArizonaTucsonUSA
  9. 9.Biochemistry, Biology, Chemistry, and Physics PhD ProgramsThe Graduate Center of The City University of New YorkNew YorkUSA
  10. 10.Earth and Environmental Sciences and Biology PhD ProgramsThe Graduate Center of The City University of New YorkNew YorkUSA

Personalised recommendations