, Volume 129, Issue 1–2, pp 235–253 | Cite as

Sources and controls of organic carbon in lakes across the subarctic treeline

  • Marttiina V. Rantala
  • Liisa Nevalainen
  • Milla Rautio
  • Annukka Galkin
  • Tomi P. Luoto


Abundant northern lakes have an intrinsic role in the transport, sequestration, and mineralization of terrestrial organic carbon. The quantity and quality of this carbon control vital aquatic biogeochemical processes, and influence the metabolic balance of lakes with subsequent impact on the global carbon cycle. We measured concentrations and type of dissolved organic matter and elemental and stable isotopic composition of carbon and nitrogen in 31 subarctic lakes with varying catchment types across the treeline in northern Finland, integrating both the pelagic (lake water) and the benthic (surface sediments) carbon pools for a comprehensive understanding of landscape influence on aquatic carbon dynamics. Wetland cover was identified as the primary catchment control over the aquatic carbon pools, reflected particularly in the bio-optical properties of lake water. Landscape influence on sediment carbon content and composition, mirroring largely the structure and productivity of the aquatic communities, was primarily connected to allochthonous nutrient inputs fueling autotrophic production. Basin depth and benthic production were identified as important internal controls on the surface sediment geochemistry. Overall, our results suggest that shallow subarctic lakes will be particularly susceptible to climate-mediated changes in the export of terrestrial organic matter from wetlands. Whether the landscape influence will promote the channeling of terrestrial carbon into the atmosphere via aquatic ecosystems will strongly depend on the interplay between the biogeochemical characteristic of the allochthonous carbon inputs, terrestrial nutrient fluxes, and the depth of the recipient ecosystems.


Carbon Colored dissolved organic matter Sediment geochemistry Stable isotopes Subarctic lakes Wetlands 



This study was funded by the Doctoral Program in Geosciences of University of Helsinki, Academy of Finland VIOLET project (#287547), Natural Sciences and Engineering Research Council of Canada, and the Canadian Foundation for Innovation. We are thankful to the personnel of the Kevo Subarctic Research Station for their helpfulness during the fieldwork, and to J. Kuha and T. Roiha for their insights on the spectral methodologies. We also wish to thank the two anonymous reviewers for their valuable insights, and J. F. Lapierre for constructive comments on an earlier version of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10533_2016_229_MOESM1_ESM.xlsx (27 kb)
Supplementary material 1 (XLSX 27 kb)


  1. ACIA (2004) Impacts of a warming Arctic: Arctic climate impact assessment. Cambridge University Press, CambridgeGoogle Scholar
  2. Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ (2009) The boundless carbon cycle. Nat Geosci 2:598–600CrossRefGoogle Scholar
  3. Bekryaev RV, Polyakov IV, Alexeev VA (2009) Role of polar amplification in long-term surface air temperature variations and modern Arctic warming. J Climatol 23:3888–3906CrossRefGoogle Scholar
  4. Bonilla S, Villeneuve V, Vincent WF (2005) Benthic and planktonic algal communities in a high arctic lake: pigment structure and contrasting responses to nutrient enrichment. J Phycol 41:1120–1130. doi: 10.1111/j.1529-8817.2005.00154.x CrossRefGoogle Scholar
  5. Breton J, Valliéres C, Laurion I (2009) Limnological properties of permafrost thaw ponds in northeastern Canada. Can J Fish Aquat Sci 66:1635–1648CrossRefGoogle Scholar
  6. Buffam I, Turner MG, Desai AR, Hanson PC, Rusak JA, Lottig NR, Stanley EH, Carpenter SR (2011) Integrating aquatic and terrestrial components to construct a complete carbon budget for a north temperate lake district. Glob Change Biol 17:1193–1211. doi: 10.1111/j.1365-2486.2010.02313.x CrossRefGoogle Scholar
  7. Cory RM, Harrold KH, Neilson BT, Kling GW (2015) Controls on dissolved organic matter (DOM) degradation in a headwater stream: the influence of photochemical and hydrological conditions in determining light-limitation or substrate-limitation of photo-degradation. Biogeosciences 12:6669–6685. doi: 10.5194/bg-12-6669-2015 CrossRefGoogle Scholar
  8. Dorrepaal E, Toet S, van Logtestijn RSP, Swart E, van de Weg M, Callaghan TV, Aerts R (2009) Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 460:616–618. doi: 10.1038/nature08216 CrossRefGoogle Scholar
  9. Downing JA, Prairie YT, Cole JJ, Duarte CA, Tranvik LJ, Striegl RG, McDowell WH, Kortelainen P, Caraco NF, Melack JM, Middelburg JJ (2006) The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51:2388–2397CrossRefGoogle Scholar
  10. Eriksson L, Johansson E, Kettaneh-Wold N, Wold S (2001) Multi- and megavariate data analysis. In: Principles and applications. Umetrics Academy, UmeåGoogle Scholar
  11. Fellman JB, D’Amore DV, Hood E, Boone RD (2008) Fluorescence characteristics and biodegradability of dissolved organic matter in forest and wetland soils from coastal temperate watersheds in southeast Alaska. Biogeochemistry 88:169–184. doi: 10.1007/s10533-008-9203-x CrossRefGoogle Scholar
  12. Fellman JB, Hood E, Spencer RGM (2010) Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: a review. Limnol Oceanogr 55:2452–2462CrossRefGoogle Scholar
  13. Finlay JC, Kendall C (2007) Stable isotope tracing of temporal and spatial variability in organic matter sources to freshwater ecosystems. In: Michener R, Lajtha K (eds) Stable isotopes in ecology and environmental science. Blackwell, Malden, pp 283–333CrossRefGoogle Scholar
  14. Forsström L, Roiha T, Rautio M (2013) Responses of microbial food web to increased allochthonous DOM in an oligotrophic subarctic lake. Aquat Microb Ecol 68:171–184. doi: 10.3354/ame01614 CrossRefGoogle Scholar
  15. Forsström L, Rautio M, Cusson M, Sorvari S, Albert R, Kumagai M, Korhola A (2015) Dissolved organic matter concentration, optical parameters and attenuation of solar radiation in high-latitude lakes across three vegetation zones. Écoscience 22:17–31. doi: 10.1080/11956860.2015.1047137 CrossRefGoogle Scholar
  16. Freeman C, Fenner N, Ostle NJ, Kang H, Dowrick DJ, Reynolds B, Lock MA, Sleep D, Hughes S, Hudson J (2004) Export of dissolved organic carbon from peatlands under elevated carbon dioxide level. Nature 430:195–198CrossRefGoogle Scholar
  17. Giesler R, Lyon SW, Mörth C-M, Karlsson J, Karlsson EM, Jantze EJ, Destouni G, Humborg C (2014) Catchment-scale dissolved carbon concentrations and export estimates across six subarctic streams in northern Sweden. Biogeosciences 11:527–537. doi: 10.5194/bg-11-525-2014 CrossRefGoogle Scholar
  18. Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195CrossRefGoogle Scholar
  19. Grosse G, Jones B, Arp C (2013) Thermokarst lakes, drainage, and drained basins. In: Shroder J, Giardino R, Harbor J (eds) Treatise on geomorphology. Academic Press, San Diego, pp 325–353CrossRefGoogle Scholar
  20. Hammer Ø, Harper DAT, Ryan PD (2001) Past: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9Google Scholar
  21. Harsch MA, Hulme PE, McGlone MS, Duncan RP (2009) Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol Lett 12:1040–1049. doi: 10.1111/j.1461-0248.2009.01355.x CrossRefGoogle Scholar
  22. Hecky RE, Hesslein RH (1995) Contributions of benthic algae to lake food webs as revealed by stable isotope analysis. J N Am Benthol Soc 14:631–653CrossRefGoogle Scholar
  23. Hogan EJ, McGowan S, Anderson JN (2014) Nutrient limitation of periphyton growth in arctic lakes in south-west Greenland. Polar Biol 37:1331–1342CrossRefGoogle Scholar
  24. Jaffé R, McKnight D, Maie N, Cory R, McDowell WH, Campbell JL (2008) Spatial and temporal variations in DOM composition in ecosystems: the importance of long-term monitoring of optical properties. J Geophys Res 113:G04032. doi: 10.1029/2008JG00068 CrossRefGoogle Scholar
  25. Jansson M, Bergström A, Blomqvist P, Drakare S (2000) Allochthonous organic carbon and phytoplankton/bacterioplankton production relationships in lakes. Ecology 81:3250–3255. doi: 10.1890/0012-9658(2000)081[3250:AOCAPB]2.0.CO;2 CrossRefGoogle Scholar
  26. Jansson M, Hickler T, Jonsson A, Karlsson J (2008) Terrestrial primary production and bacterial production and respiration in lakes in a climate gradient in subarctic Sweden. Ecosystems 11:367–376. doi: 10.1007/s10021-008-9127-2 CrossRefGoogle Scholar
  27. Jeffrey SW, Welschmeyer NA (1997) Spectrophotometric and fluorometric equations in common use in oceanography. In: Jeffrey SW, Mantoura RFC, Wright SW (eds) Phytoplankton pigments in oceanography. UNESCO Publishing, Paris, pp 597–615Google Scholar
  28. Kalbitz K, Solinger S, Park J, Michalzik B, Matzner E (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165:277–304CrossRefGoogle Scholar
  29. Karlsson J, Jonsson A, Jansson M (2005) Productivity of high-latitude lakes: climate effect inferred from altitude gradient. Glob Change Biol. doi: 10.1111/j.1365-2486.2005.00945.x Google Scholar
  30. Karlsson J, Byström P, Ask J, Ask P, Persson L, Jansson M (2009) Light limitation of nutrient-poor lake ecosystems. Nature. doi: 10.1038/nature08179 Google Scholar
  31. Kissman CEH, Williamson CE, Rose KC, Saros JE (2013) Response of phytoplankton in an alpine lake to inputs of dissolved organic matter through nutrient enrichment and trophic forcing. Limnol Oceanogr 58:867–880. doi: 10.4319/lo.2013.58.3.0867 Google Scholar
  32. Korhola A, Weckström J, Blom T (2002) Relationships between lake and land-cover features along latitudinal vegetation ecotones in arctic Fennoscandia. Arch Hydrobiol Suppl 139:203–235Google Scholar
  33. Kortelainen P (1993) Content of total organic carbon in Finnish lakes and its relationship to catchment characteristics. Can J Fish Aquat Sci 50:1477–1483CrossRefGoogle Scholar
  34. Kothawala DN, Stedmon CA, Müller RA, Weyhenmeyer GA, Köhler SJ, Tranvik LJ (2014) Controls of dissolved organic matter quality: evidence from a large-scale boreal lake survey. Glob Change Biol 20:1101–1114. doi: 10.1111/gcb.12488 CrossRefGoogle Scholar
  35. Kotilainen M (2004) Dune stratigraphy as an indicator of Holocene climatic change and human impact in northern Lapland, Finland. Dissertation, University of HelsinkiGoogle Scholar
  36. Lapierre J, Seekell DA, del Giorgio PA (2015) Climate and landscape influence on indicators of lake carbon cycling through spatial patterns in dissolved organic carbon. Glob Change Biol 21:4425–4435CrossRefGoogle Scholar
  37. Larsen S, Andersen T, Hessen DO (2011) Climate change predicted to cause severe increase of organic carbon in lakes. Glob Change Biol 17:1186–1192CrossRefGoogle Scholar
  38. Lehmann MF, Bernasconi SM, Barbieri A, McKenzie JA (2002) Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochim Cosmochim Acta 66:3573–3584CrossRefGoogle Scholar
  39. Luoto TP, Rantala MV, Galkin A, Rautio M, Nevalainen L (2016) Environmental determinants of chironomid communities in remote northern lakes across the treeline–implications for climate change assessments. Ecol Indic 61:991–999. doi: 10.1016/j.ecolind.2015.10.057 CrossRefGoogle Scholar
  40. Mariash HL, Devlin S, Forsström L, Jones R, Rautio M (2014) Benthic mats offer a potential subsidy to pelagic consumers in tundra pond food webs. Limnol Oceanogr 59:733–744. doi: 10.4319/lo.2014.59.3.0733 CrossRefGoogle Scholar
  41. Markager S, Vincent WF (2000) Spectral light attenuation and the absorption of UV and blue light in natural waters. Limnol Oceanogr 45:642–650CrossRefGoogle Scholar
  42. Martin SL, Soranno PA (2006) Lake landscape position: relationships to hydrologic connectivity and landscape features. Limnol Oceanogr 51:801–814CrossRefGoogle Scholar
  43. McKnight DM, Boyer EW, Westerhoff PK, Doran PT, Kulbe T, Andersen DT (2001) Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol Oceanogr 46:38–48CrossRefGoogle Scholar
  44. Meyers PA (2003) Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org Geochem 34:261–289CrossRefGoogle Scholar
  45. Nevalainen L, Luoto TP, Rantala MV, Galkin A, Rautio M (2015) Role of terrestrial carbon in aquatic UV exposure and photoprotective pigmentation of meiofauna in subarctic lakes. Freshw Biol 60:2435–2444. doi: 10.1111/fwb.12670 CrossRefGoogle Scholar
  46. Nusch EA (1980) Comparison of different methods for chlorophyll and phaeopigment determination. Arch Hydrobiol Beih 14:14–36Google Scholar
  47. Odland A (1996) Differences in the vertical distribution pattern of Betula pubescens in Norway and its ecological significance. In: Frenzel B (ed) Holocene treeline oscillations, dendrochronology and paleoclimate. Fischer, Stuttgart, pp 43–59Google Scholar
  48. Olefeldt D, Roulet N, Giesler R, Persson A (2013) Total waterborne carbon export and DOC composition from ten nested subarctic peatland catchments–importance of peatland cover, groundwater influence, and inter-annual variability of precipitation patterns. Hydrol Process 27:2280–2294. doi: 10.1002/hyp.9358 CrossRefGoogle Scholar
  49. Pienitz R, Vincent WF (2000) Effect of climate change relative to ozone depletion on UV exposure in subarctic lakes. Nature 404:484–487CrossRefGoogle Scholar
  50. Ranmarine R, Voroney PR, Wagner-Riddle C, Dunfield KE (2011) Carbonate removal by acid fumigation for measuring the δ13C of soil organic carbon. Can J Soil Sci 91:247–250CrossRefGoogle Scholar
  51. Rautio M, Dufresne F, Laurion I, Bonilla S, Vincent WF, Christoffersen KS (2011) Shallow freshwater ecosystems of the circumpolar Arctic. Écoscience 18:204–222CrossRefGoogle Scholar
  52. Read EK, Patil VP, Oliver SK, Hetherington AL, Brentrup JA, Zwart JA, Winters KM, Corman JR, Nodine ER, Woolway RI, Dugan HA, Jaimes A, Santoso AB, Hong GS, Winslow LA, Hanson PC, Weathers KC (2015) The importance of lake-specific characteristics for water quality across the continental United States. Ecol Appl 25:943–955CrossRefGoogle Scholar
  53. Roehm CL, Giesler R, Karlsson J (2009) Bioavailability of terrestrial organic carbon to lake bacteria: the case of degrading subarctic permafrost mire complex. J Geophys Res 114:G03006. doi: 10.1029/2008JG000863 CrossRefGoogle Scholar
  54. Roiha T, Tiirola M, Cazzanelli M, Rautio M (2012) Carbon quantity defines productivity while its quality defines community composition of bacterioplankton in subarctic ponds. Aquat Sci 74:513–525. doi: 10.1007/s00027-011-0244-1 CrossRefGoogle Scholar
  55. Roiha T, Laurion I, Rautio M (2015) Carbon dynamics in highly heterotrophic subarctic thaw ponds. Biogeosciences 12:7223–7237. doi: 10.5194/bg-12-7223-2015 CrossRefGoogle Scholar
  56. Rühland K, Smol JP, Wang X, Muir DCG (2003) Limnological characteristics of 56 lakes in the central Canadian Arctic treeline region. J Limnol 62:9–27CrossRefGoogle Scholar
  57. Sanders RW, Cooke SL, Fischer JM, Frey SB, Heinze AW, Jeffrey WH, Macaluso AL, Moeller RE, Morris DP, Neale PJ, Olson MH, Pakulski D, Porter JA, Schoener DM, Williamson CE (2015) Shifts in microbial food web structure and productivity after additions of naturally occurring dissolved organic matter: results from large-scale lacustrine mesocosms. Limnol Oceanogr 60:2130–2144. doi: 10.1002/lno.10159 CrossRefGoogle Scholar
  58. Seekell DA, Lapierre J, Pace ML, Gudaz C, Sobek S, Tranvik LJ (2014) Regional-scale variation of dissolved organic carbon concentrations in Swedish lakes. Limnol Oceanogr 59:1612–1620CrossRefGoogle Scholar
  59. Seekell DA, Lapierre J, Ask J, Bergström A, Deininger A, Rodríguez P, Karlsson J (2015a) The influence of dissolved organic carbon on primary production in northern lakes. Limnol Oceanogr 60:1276–1285. doi: 10.1002/lno.10096 CrossRefGoogle Scholar
  60. Seekell DA, Lapierre J, Karlsson J (2015b) Trade-offs between light and nutrient availability across gradients of dissolved organic carbon concentrations in Swedish lakes: implications for patterns in primary production. Can J Fish Aquat Sci 72:1663–1671. doi: 10.1139/cjfas-2015-0187 CrossRefGoogle Scholar
  61. Sepulveda-Jauregui A, Walter Anthony KM, Martinez-Cruz K, Greene S, Thalasso F (2015) Methane and carbon dioxide emissions from 40 lakes along a North-South latitudinal transect in Alaska. Biogeosciences 12:3197–3223CrossRefGoogle Scholar
  62. Šmilauer P, Lepš J (2014) Multivariate analysis of ecological data using Canoco 5. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  63. Smol JP (2015) Arctic and sub-Arctic shallow lakes in a multiple-stressor world: a paleoecological perspective. Hydrobiologia. doi: 10.1007/s10750-015-2543-3 Google Scholar
  64. Snucins E, Gunn J (2000) Interannual variation in the thermal structure of clear and colored lakes. Limnol Oceangr 45:1639–1646CrossRefGoogle Scholar
  65. Sobek S, Tranvik LJ (2005) Temperature independence of carbon dioxide supersaturation in global lakes. Glob Biogeochem Cycles 19:GB2003. doi: 10.1029/2004GB002264
  66. Sobek S, Tranvik LJ, Prairie YT, Kortelainen P, Cole JJ (2007) Patterns and regulation of dissolved organic carbon: an analysis of 7500 widely distributed lakes. Limnol Oceanogr 52:1208–1219CrossRefGoogle Scholar
  67. Solomon CT, Jones SE, Weidel BC, Buffam I, Fork ML, Karlsson J, Larsen S, Lennon JT, Read JS, Sadro S, Saros JE (2015) Ecosystem consequences of changing inputs of terrestrial dissolved organic matter to lakes: current knowledge and future challenges. Ecosystems 18:376–389CrossRefGoogle Scholar
  68. Søndergaard M, Jensen JP, Jeppesen E (2003) Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506:135–145CrossRefGoogle Scholar
  69. Soranno PA, Cheruvelil KS, Wagner T, Webster KE, Bremigan MT (2015) Effects of land use on lake nutrients: the importance of scale, hydrologic connectivity, and region. PLoS ONE 10:e0135454. doi: 10.1371/journal.pone.0135454 CrossRefGoogle Scholar
  70. Stedmon CA, Bro R (2008) Characterizing DOM fluorescence with PARAFAC: a tutorial. Limnol Oceanogr Methods 6:572–579CrossRefGoogle Scholar
  71. Stedmon CA, Markager S, Bro R (2003) Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar Chem 82:239–254CrossRefGoogle Scholar
  72. Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K, Fortino K, Knoll LB, Kortelainen PL, Kutser T, Larsen S, Laurion I, Leech DM, McCallister LS, McKnight DM, Melack JM, Overholt E, Porter JA, Prairie Y, Renwick WH, Sherman BS, Schindler DW, Sobek S, Tremblay A, Vanni MJ, Verschoor AM, Ev Wachenfel, Weyhenmeyer GA (2009) Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54:2298–2314CrossRefGoogle Scholar
  73. Turunen J, Tomppo E, Tolonen K, Reinikainen A (2002) Estimating carbon accumulation rates of undrained mires in Finland–application to boreal and subarctic regions. Holocene 12:69–80CrossRefGoogle Scholar
  74. Vadeboncoeur Y, Vander Zanden JM, Lodge DM (2002) Putting the lake back together: reintegrating benthic pathway into lake food web models. Bioscience 52:44–54CrossRefGoogle Scholar
  75. Vadeboncoeur Y, Peterson G, Vander Zanden JM, Kalff J (2008) Benthic algal production across lake size gradients: interactions among morphometry, nutrients, and light. Ecology 89:2542–2552CrossRefGoogle Scholar
  76. Vonk JE, Tank SE, Bowden WB, Laurion I, Vincent WF, Alekseychik P, Amyot M, Billet MF, Canário J, Cory RM, Deshpande BN, Helbig M, Jammet M, Karlsson J, Larouche J, MacMillan G, Rautio M, Walter Anthony KM, Wickland KP (2015) Review and syntheses: effects of permafrost thaw on Arctic aquatic ecosystems. Biogeosciences 12:7129–7167. doi: 10.5194/bg-12-7129-2015 CrossRefGoogle Scholar
  77. Weishaar JL, Aiken GR, Bergamaschi BA, Fram MS, Fujii R, Mopper K (2003) Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ Sci Technol 37:4702–4708CrossRefGoogle Scholar
  78. Wilkinson GM, Pace ML, Cole JJ (2013) Terrestrial dominance of organic matter in north temperate lakes. Glob Biogeochem Cycles 27:43–51. doi: 10.1029/2012GB004453 CrossRefGoogle Scholar
  79. Williamson CE, Overholt E, Pilla RM, Leach TH, Brentrup JA, Knoll LB, Mette EM, Moeller RE (2015) Ecological consequences of long-term browning in lakes. Sci Rep 5:18666. doi: 10.1038/srep18666 CrossRefGoogle Scholar
  80. Xenopoulos MA, Lodge DM, Frentress J, Kreps TA, Bridgham SD, Grossman E, Jackson CJ (2003) Regional comparisons of watershed determinants of dissolved organic carbon in temperate lakes from the Upper Great Lakes region and selected regions globally. Limnol Oceanogr 48:2321–2334CrossRefGoogle Scholar
  81. Yentsch CS, Menzel DW (1963) A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep Sea Res Oceanogr Abstr 10:221–231CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Geosciences and GeographyUniversity of HelsinkiHelsinkiFinland
  2. 2.Department of Biological and Environmental ScienceUniversity of JyvaskylaJyvaskylaFinland
  3. 3.Department of Fundamental Sciences & Centre for Northern Studies (CEN) & Group for Interuniversity Research in Limnology and Aquatic Environment (GRIL)Université du Québec á ChicoutimiQuebecCanada

Personalised recommendations