, Volume 129, Issue 1–2, pp 37–51 | Cite as

Vertical distribution of carbon and nitrogen stable isotope ratios in topsoils across a temperate rainforest dune chronosequence in New Zealand

  • Melanie Brunn
  • Leo Condron
  • Andrew Wells
  • Sandra Spielvogel
  • Yvonne Oelmann


Chronosequences can provide valuable insights into carbon (C) and nitrogen (N) dynamics across natural gradients with C and N stable isotopes serving as powerful tool investigating these dynamics. We studied changes in δ13C and δ15N values in litter, organic layer and mineral soil on dunes across the Haast chronosequence (New Zealand), which spans 120 to 2870 years of pedogenesis beneath a temperate rainforest. Decomposition was approximated from linear regression slopes between C concentrations and δ13C values and termed betaC. Similarly we calculated betaN values to test the relationship between vertical N decrease and δ15N increase. Decreasing δ13C values of litter with age suggests a physiological response of plants to decreased litter N concentrations. A decrease of litter δ15N in the early succession stages and a second decline after 1300 years indicates reduced N2 fixation. BetaC values increased during early ecosystem development and at old sites, and were lowest at the intermediate stages (1500 years), which suggests decomposition did not decrease constantly with time. BetaN values were lowest at the youngest site and increased within the first 200 years, likely because litter as the uppermost part of the vertical depth profile reflected an increased supply of N depleted in 15N provided by fungi. We found relations between betaC and betaN values suggesting that there might be shared processes shaping δ13C and δ15N vertical depth profiles, e.g. microbial cycling, transport or sorption.


δ13C and δ15N depth profile Natural abundance stable isotopes N2 fixation Nutrient limitation Organic layer Organic matter decomposition 



We thank G. Guggenberger, L. Sauheitl and S. Bokeloh (Leibniz University Hanover, Germany) for providing isotopic analysis, U. Bange, M. Kraft and A. Bell (University of Koblenz-Landau, Germany) for laboratory assistance, A. Torky and N. Franks (Lincoln University, New Zealand) for organizing the sample transport and W. Wilcke (Karlsruhe Institute of Technology, Germany) and F. Brunn (University of Mainz, Germany) for facilitating this work. We gratefully acknowledge research funding by the German Academic Exchange Service (DAAD Grant D/12/45516).

Supplementary material

10533_2016_218_MOESM1_ESM.pptx (722 kb)
Supplementary material 1 (PPTX 721 kb)
10533_2016_218_MOESM2_ESM.pptx (522 kb)
Supplementary material 2 (PPTX 522 kb)
10533_2016_218_MOESM3_ESM.xlsx (16 kb)
Supplementary material 3 (XLSX 16 kb)
10533_2016_218_MOESM4_ESM.xlsx (13 kb)
Supplementary material 4 (XLSX 12 kb)


  1. Acton P, Fox J, Campbell E, Rowe H, Wilkinson M (2013) Carbon isotopes for estimating soil decomposition and physical mixing in well-drained forest soils. J Geophys Res Biogeosci 118(4):1532–1545CrossRefGoogle Scholar
  2. Andrews M, James EK, Sprent JI, Boddey RM, Gross E, dos Reis FB (2011) Nitrogen fixation in legumes and actinorhizal plants in natural ecosystems: values obtained using N-15 natural abundance. Plant Ecol Divers 4(2–3):131–140CrossRefGoogle Scholar
  3. Berg B, Steffen KT, McClaugherty C (2007) Litter decomposition rate is dependent on litter Mn concentrations. Biogeochemistry 82(1):29–39CrossRefGoogle Scholar
  4. Billings SA, Richter DD (2006) Changes in stable isotopic signatures of soil nitrogen and carbon during 40 years of forest development. Oecologia 148(2):325–333CrossRefGoogle Scholar
  5. Bird M, Kracht O, Derrien D, Zhou Y (2003) The effect of soil texture and roots on the stable carbon isotope composition of soil organic carbon. Aust J Soil Res 41(1):77–94CrossRefGoogle Scholar
  6. Brunn M, Spielvogel S, Sauer T, Oelmann Y (2014) Temperature and precipitation effects on delta C-13 depth profiles in SOM under temperate beech forests. Geoderma 235:146–153CrossRefGoogle Scholar
  7. Cernusak LA, Ubierna N, Winter K, Holtum JAM, Marshall JD, Farquhar GD (2013) Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants. New Phytol 200(4):950–965CrossRefGoogle Scholar
  8. Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay RD, Wardle DA, Lindahl BD (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339(6127):1615–1618CrossRefGoogle Scholar
  9. Clemmensen KE, Finlay RD, Dahlberg A, Stenlid J, Wardle DA, Lindahl BD (2015) Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. New Phytol 205(4):1525–1536CrossRefGoogle Scholar
  10. Craine JM, Brookshire ENJ, Cramer MD, Hasselquist NJ, Koba K, Marin-Spiotta E, Wang LX (2015) Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant Soil 396(1–2):1–26CrossRefGoogle Scholar
  11. DeLuca TH, Zackrisson O, Gundale MJ, Nilsson MC (2008) Ecosystem feedbacks and nitrogen fixation in boreal forests. Science 320(5880):1181CrossRefGoogle Scholar
  12. Dickie IA, Martinez-Garcia LB, Koele N, Grelet GA, Tylianakis JM, Peltzer DA, Richardson SJ (2013) Mycorrhizas and mycorrhizal fungal communities throughout ecosystem development. Plant Soil 367(1–2):11–39CrossRefGoogle Scholar
  13. Dijkstra P, Ishizu A, Doucett R, Hart SC, Schwartz E, Menyailo OV, Hungate BA (2006) C-13 and N-15 natural abundance of the soil microbial biomass. Soil Biol Biochem 38(11):3257–3266CrossRefGoogle Scholar
  14. Diochon A, Kellman L (2008) Natural abundance measurements of (13)C indicate increased deep soil carbon mineralization after forest disturbance. Geophys Res Lett 35(14):1–5CrossRefGoogle Scholar
  15. Eger A, Almond PC, Condron LM (2011) Pedogenesis, soil mass balance, phosphorus dynamics and vegetation communities across a Holocene soil chronosequence in a super-humid climate, South Westland, New Zealand. Geoderma 163(3–4):185–196CrossRefGoogle Scholar
  16. Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537CrossRefGoogle Scholar
  17. Fotelli MN, Rennenberg H, Holst T, Mayer H, Gessler A (2003) Carbon isotope composition of various tissues of beech (Fagus sylvatica) regeneration is indicative of recent environmental conditions within the forest understorey. New Phytol 159(1):229–244CrossRefGoogle Scholar
  18. Francey RJ, Allison CE, Etheridge DM, Trudinger CM, Enting IG, Leuenberger M, Langenfelds RL, Michel E, Steele LP (1999) A 1000-year high precision record of delta C-13 in atmospheric CO2. Tellus Ser B Chem Phys Meteorol 51(2):170–193CrossRefGoogle Scholar
  19. Gadgil RL, Gadgil PD (1971) Mycorrhiza and litter decomposition. Nature 233(5315):133CrossRefGoogle Scholar
  20. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vorosmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70(2):153–226CrossRefGoogle Scholar
  21. Garten CT (2006) Relationships among forest soil C isotopic composition, partitioning, and turnover times. Can J For Res 36(9):2157–2167CrossRefGoogle Scholar
  22. Garten CT, Iversen CM, Norby RJ (2011) Litterfall N-15 abundance indicates declining soil nitrogen availability in a free-air CO2 enrichment experiment. Ecology 92(1):133–139CrossRefGoogle Scholar
  23. Ghashghaie J, Badeck FW (2014) Opposite carbon isotope discrimination during dark respiration in leaves versus roots—a review. New Phytol 201(3):751–769CrossRefGoogle Scholar
  24. Guehl JM, Fort C, Ferhi A (1995) Differential response of leaf conductance, carbon isotope discrimination and water-use efficiency to nitrogen deficiency in maritime pine and pedunculate oak plants. New Phytol 131(2):149–157CrossRefGoogle Scholar
  25. Guillaume T, Damris M, Kuzyakov Y (2015) Losses of soil carbon by converting tropical forest to plantations: erosion and decomposition estimated by delta C-13. Glob Change Biol 21(9):3548–3560CrossRefGoogle Scholar
  26. Hobbie EA, Högberg P (2012) Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics. New Phytol 196(2):367–382CrossRefGoogle Scholar
  27. Hobbie EA, Ouimette AP (2009) Controls of nitrogen isotope patterns in soil profiles. Biogeochemistry 95(2–3):355–371CrossRefGoogle Scholar
  28. Hobbie EA, Macko SA, Shugart HH (1999) Insights into nitrogen and carbon dynamics of ectomycorrhizal and saprotrophic fungi from isotopic evidence. Oecologia 118(3):353–360CrossRefGoogle Scholar
  29. Högberg P (1997) Tansley review No 95 - N-15 natural abundance in soil-plant systems. New Phytol 137(2):179–203CrossRefGoogle Scholar
  30. Houlton BZ, Bai E (2009) Imprint of denitrifying bacteria on the global terrestrial biosphere. Proc Natl Acad Sci USA 106(51):21713–21716CrossRefGoogle Scholar
  31. Houlton BZ, Sigman DM, Hedin LO (2006) Isotopic evidence for large gaseous nitrogen losses from tropical rainforests. Proc Natl Acad Sci USA 103(23):8745–8750CrossRefGoogle Scholar
  32. Hyodo F, Wardle DA (2009) Effect of ecosystem retrogression on stable nitrogen and carbon isotopes of plants, soils and consumer organisms in boreal forest islands. Rapid Commun Mass Spectrom 23(13):1892–1898CrossRefGoogle Scholar
  33. Hyodo F, Kusaka S, Wardle DA, Nilsson MC (2013) Changes in stable nitrogen and carbon isotope ratios of plants and soil across a boreal forest fire chronosequence. Plant Soil 367(1–2):111–119CrossRefGoogle Scholar
  34. Jangid K, Whitman WB, Condron LM, Turner BL, Williams MA (2013) Progressive and retrogressive ecosystem development coincide with soil bacterial community change in a dune system under lowland temperate rainforest in New Zealand. Plant Soil 367(1–2):235–247CrossRefGoogle Scholar
  35. Jones AR, Sanderman J, Allen D, Dalal R, Schmidt S (2015) Subtropical giant podzol chronosequence reveals that soil carbon stabilisation is not governed by litter quality. Biogeochemistry 124(1–3):205–217CrossRefGoogle Scholar
  36. Keeling CD, Piper SC, Bacastow RB, Wahlen M, Whorf TP, Heimann M, Meijer HA (2005) Atmospheric CO2 and (CO2)-C-13 exchange with the terrestrial biosphere and oceans from 1978 to 2000: observations and carbon cycle implications. In: Ehleringer JR, Cerling TE, Dearing MD (eds) Ecological studies: analysis and synthesis. Springer, New York, pp 83–113Google Scholar
  37. Keiluweit M, Nico P, Harmon ME, Mao JD, Pett-Ridge J, Kleber M (2015) Long-term litter decomposition controlled by manganese redox cycling. Proc Natl Acad Sci USA 112(38):E5253–E5260CrossRefGoogle Scholar
  38. Kohl L, Laganiere J, Edwards KA, Billings SA, Morrill PL, Van Biesen G, Ziegler SE (2015) Distinct fungal and bacterial delta C-13 signatures as potential drivers of increasing delta C-13 of soil organic matter with depth. Biogeochemistry 124(1–3):13–26CrossRefGoogle Scholar
  39. Körner C, Diemer M (1987) In situ photosynthetic responses to light, temperature and carbon dioxide in herbaceous plants from low and high altitude. Funct Ecol 1(3):179–194CrossRefGoogle Scholar
  40. Kramer MG, Sollins P, Sletten RS, Swart PK (2003) N isotope fractionation and measures of organic matter alteration during decomposition. Ecology 84(8):2021–2025CrossRefGoogle Scholar
  41. Krull ES, Bestland EA, Gates WP (2002) Soil organic matter decomposition and turnover in a tropical ultisol: evidence from delta C-13, delta N-15 and geochemistry. Radiocarbon 44(1):93–112CrossRefGoogle Scholar
  42. Kusliene G, Eriksen J, Rasmussen J (2015) Leaching of dissolved organic and inorganic nitrogen from legume-based grasslands. Biol Fertil Soils 51(2):217–230CrossRefGoogle Scholar
  43. Langley JA, Hungate BA (2003) Mycorrhizal controls on belowground litter quality. Ecology 84(9):2302–2312CrossRefGoogle Scholar
  44. Lerch TZ, Nunan N, Dignac MF, Chenu C, Mariotti A (2011) Variations in microbial isotopic fractionation during soil organic matter decomposition. Biogeochemistry 106(1):5–21CrossRefGoogle Scholar
  45. Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Hogberg P, Stenlid J, Finlay RD (2007) Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol 173(3):611–620CrossRefGoogle Scholar
  46. Martinelli LA, Piccolo MC, Townsend AR, Vitousek PM, Cuevas E, McDowell W, Robertson GP, Santos OC, Treseder K (1999) Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistry 46(1–3):45–65Google Scholar
  47. Martinez-Garcia LB, Richardson SJ, Tylianakis JM, Peltzer DA, Dickie IA (2015) Host identity is a dominant driver of mycorrhizal fungal community composition during ecosystem development. New Phytol 205(4):1565–1576CrossRefGoogle Scholar
  48. Marty C, Houle D, Gagnon C (2015) Effect of the relative abundance of conifers versus hardwoods on soil delta C-13 enrichment with soil depth in Eastern Canadian forests. Ecosystems 18(4):629–642CrossRefGoogle Scholar
  49. Melillo JM, Aber JD, Linkins AE, Ricca A, Fry B, Nadelhoffer KJ (1989) Carbon and nitrogen dynamics along the decay continuum—plant litter to soil organic-matter. Plant Soil 115(2):189–198CrossRefGoogle Scholar
  50. Menge DNL, Hedin LO (2009) Nitrogen fixation in different biogeochemical niches along a 120 000-year chronosequence in New Zealand. Ecology 90(8):2190–2201CrossRefGoogle Scholar
  51. Menge DNL, Baisden WT, Richardson SJ, Peltzer DA, Barbour MM (2011) Declining foliar and litter delta 15N diverge from soil, epiphyte and input delta 15N along a 120 000 yr temperate rainforest chronosequence. New Phytol 190(4):941–952CrossRefGoogle Scholar
  52. Menge DNL, Wolf AA, Funk JL (2015) Diversity of nitrogen fixation strategies in Mediterranean legumes. Nat Plants 1(6):1–5Google Scholar
  53. Nadelhoffer KF, Fry B (1988) Controls on natural N-15 and C-13 abundances in forest soil organic-matter. Soil Sci Soc Am J 52(6):1633–1640CrossRefGoogle Scholar
  54. Peltzer DA, Wardle DA, Allison VJ, Baisden WT, Bardgett RD, Chadwick OA, Condron LM, Parfitt RL, Porder S, Richardson SJ, Turner BL, Vitousek PM, Walker J, Walker LR (2010) Understanding ecosystem retrogression. Ecol Monogr 80(4):509–529CrossRefGoogle Scholar
  55. Perakis SS, Hedin LO (2002) Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds. Nature 415(6870):416–419CrossRefGoogle Scholar
  56. Pickett STA, White PS (1985) The ecology of natural disturbance and patch dynamics. Academic Press, Orlando, p 472Google Scholar
  57. Powers JS, Schlesinger WH (2002) Geographic and vertical patterns of stable carbon isotopes in tropical rain forest soils of Costa Rica. Geoderma 109(1–2):141–160CrossRefGoogle Scholar
  58. Reed SC, Cleveland CC, Townsend AR (2011) Functional ecology of free-living nitrogen fixation: a contemporary perspective. In: Futuyma DJ, Shaffer HB, Simberloff D (eds) Annual review of ecology, evolution, and systematics, vol 42. Annual Reviews, Palo Alto, pp 489–512Google Scholar
  59. Rillig MC, Aguilar-Trigueros CA, Bergmann J, Verbruggen E, Veresoglou SD, Lehmann A (2015) Plant root and mycorrhizal fungal traits for understanding soil aggregation. New Phytol 205(4):1385–1388CrossRefGoogle Scholar
  60. Savin NE, White KJ (1977) Durbin–Watson test for serial—correlation with extreme sample sizes or many regressors. Econometrica 45(8):1989–1996CrossRefGoogle Scholar
  61. Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478(7367):49–56CrossRefGoogle Scholar
  62. Stockmann U, Adams MA, Crawford JW, Field DJ, Henakaarchchi N, Jenkins M, Minasny B, McBratney AB, de Courcelles VD, Singh K, Wheeler I, Abbott L, Angers DA, Baldock J, Bird M, Brookes PC, Chenu C, Jastrow JD, Lal R, Lehmann J, O’Donnell AG, Parton WJ, Whitehead D, Zimmermann M (2013) The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric Ecosyst Environ 164:80–99CrossRefGoogle Scholar
  63. Templer PH, Arthur MA, Lovett GM, Weathers KC (2007) Plant and soil natural abundance delta N-15: indicators of relative rates of nitrogen cycling in temperate forest ecosystems. Oecologia 153(2):399–406CrossRefGoogle Scholar
  64. Turner BL, Condron LM, Wells A, Andersen KM (2012a) Soil nutrient dynamics during podzol development under lowland temperate rain forest in New Zealand. Catena 97:50–62CrossRefGoogle Scholar
  65. Turner BL, Wells A, Andersen KM, Condron LM (2012b) Patterns of tree community composition along a coastal dune chronosequence in lowland temperate rain forest in New Zealand. Plant Ecol 213(10):1525–1541CrossRefGoogle Scholar
  66. Turner BL, Wells A, Condron LM (2014) Soil organic phosphorus transformations along a coastal dune chronosequence under New Zealand temperate rain forest. Biogeochemistry 121(3):595–611CrossRefGoogle Scholar
  67. Unkovich M (2013) Isotope discrimination provides new insight into biological nitrogen fixation. New Phytol 198(3):643–646CrossRefGoogle Scholar
  68. Vitousek P (2004) Nutrient cycling and limitation: Hawai’i as a model system. Princeton University Press, PrincetonGoogle Scholar
  69. Vitousek PM, Farrington H (1997) Nutrient limitation and soil development: experimental test of a biogeochemical theory. Biogeochemistry 37(1):63–75CrossRefGoogle Scholar
  70. Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how it can occur? Biogeochemistry 13(2):87–115CrossRefGoogle Scholar
  71. Vitousek PM, Field CB, Matson PA (1990) Variation in foliar δ13C in Hawaiian Metrosideros polymorpha: a case of internal resistance? Oecologia 84(3):362–370CrossRefGoogle Scholar
  72. Vitousek PM, Menge DNL, Reed SC, Cleveland CC (2013) Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philos Trans R Soc Lond B Biol Sci 368(1621):20130119CrossRefGoogle Scholar
  73. Walker TW, Syers JK (1976) The fate of phosphorus during pedogenesis. Geoderma 15(1):1–19CrossRefGoogle Scholar
  74. Wallander H, Morth CM, Giesler R (2009) Increasing abundance of soil fungi is a driver for N-15 enrichment in soil profiles along a chronosequence undergoing isostatic rebound in northern Sweden. Oecologia 160(1):87–96CrossRefGoogle Scholar
  75. Wardle DA, Walker LR, Bardgett RD (2004) Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305(5683):509–513CrossRefGoogle Scholar
  76. Wells A, Goff J (2007) Coastal dunes in Westland, New Zealand, provide a record of paleoseismic activity on the Alpine fault. Geology 35(8):731–734CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Melanie Brunn
    • 1
  • Leo Condron
    • 2
  • Andrew Wells
    • 2
  • Sandra Spielvogel
    • 3
  • Yvonne Oelmann
    • 1
  1. 1.GeoecologyUniversity of TuebingenTuebingenGermany
  2. 2.Faculty of Agriculture and Life SciencesLincoln UniversityLincolnNew Zealand
  3. 3.Institute of GeographyUniversity of BernBernSwitzerland

Personalised recommendations