Advertisement

Biogeochemistry

, Volume 125, Issue 1, pp 97–114 | Cite as

Rapid cycling of recently fixed carbon in a Spartina alterniflora system: a stable isotope tracer experiment

  • Amanda C. Spivak
  • Jennifer Reeve
Article

Abstract

Carbon dynamics in vegetated ecosystems are influenced by plants, belowground bacteria, and their interactions. Consequently, quantifying the fate of new plant production, identifying bacterial carbon sources, and evaluating plant–microbe interactions can provide insight to carbon cycling and storage. To follow short-term carbon transformations in a Spartina alterniflora—soil system, we applied 13C-labeled CO2 to aboveground leaves and chased it belowground into roots and bacterial lipids. Plant mesocosms were exposed to 13CO2 for 0, 1, 3, or 6 h. Incorporation of 13CO2 by plants and soil microbes was measured immediately after the incubation (Day 0) and 24 h later (Day 1). During a 24 h period, 41–64 % of the 13CO2 fixed by S. alterniflora was retained in leaves, 2.7–6.4 % was transferred to roots, and 30–55 % was lost via respiration. Small fractions of 13C assimilated by aboveground leaves were detected belowground in bacterial lipids on Day 1. Enrichment of lipids specific to sulfate reducing bacteria (10-methyl C16:0, cy-C17:0) indicated tight coupling between aboveground plant production and belowground anaerobic metabolisms. Overall, we found that a substantial fraction of new production was returned to the atmosphere within 24 h and that belowground bacteria were tightly coupled to plant dynamics.

Keywords

Carbon cycling Wetland Stable isotope Lipid biomarkers Spartina alterniflora Mesocosm Respiration 

Notes

Acknowledgments

Thanks to J.W. Pohlman for providing access to the CRDS instruments that were used to collect the CO2 gas flux data and constructive input on earlier versions of this manuscript. Many thanks to S. Sievert, A. Giblin, Z. Cardon, and F. Thomas for conversations that guided the experimental setup, design, and sampling. We greatly appreciate the Plum Island Ecosystem Long Term Ecological Research site (PIE-LTER; NSF-Award 1238212) for allowing us to collect plant cores and peat for this experiment. M. Diaz, B. McLaughlin, M.A. Wunderly, J. Nelson, and K. Hoering helped with sample collection. G. Swarr and J. Tagliaferre prepared samples and conducted analyses. This manuscript was improved by comments from C. S. Hopkinson, S. C. Neubauer, M. Osland, and two anonymous reviewers. J. Reeve was supported by WHOI’s Summer Student Fellow program while Woods Hole Partnership in Education Program supported B. McLaughlin and M. Diaz. Our study was funded by WHOI’s Coastal Ocean Institute with additional support from WHOI.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Allard V, Robin C, Newton PCD, Lieffering M, Soussana JF (2006) Short and long-term effects of elevated CO2 on Lolium perenne rhizodeposition and its consequences on soil organic matter turnover and plant N yield. Soil Biol Biochem 38:1178–1187. doi: 10.1016/j.soilbio.2005.10.002 CrossRefGoogle Scholar
  2. Andrews JA, Harrison KG, Matamala R, Schlesinger WH (1999) Separation of root respiration from total soil respiration using carbon-13 labeling during free-air carbon dioxide enrichment (FACE). Soil Sci Soc Am J 63:1429–1435. doi: 10.2136/sssaj1999.6351429x CrossRefGoogle Scholar
  3. Balasooriya WK, Denef K, Peters J, Verhoest NEC, Boeckx P (2008) Vegetation composition and soil microbial community structural changes along a wetland hydrological gradient. Hydrol Earth Syst Sci 12:277–291. doi: 10.5194/hess-12-277-2008 CrossRefGoogle Scholar
  4. Balasooriya W, Huygens D, Denef K, Roobroeck D, Verhoest NC, Boeckx P (2013) Temporal variation of rhizodeposit-C assimilating microbial communities in a natural wetland. Biol Fertil Soils 49:333–341. doi: 10.1007/s00374-012-0729-7 CrossRefGoogle Scholar
  5. Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feedbacks. ISME J 2:805–814CrossRefGoogle Scholar
  6. Benner R, Fogel ML, Sprague EK (1991) Diagenesis of belowground biomass of Spartina alterniflora in saltmarsh sediments. Limnol Oceanogr 36:1358–1374CrossRefGoogle Scholar
  7. Bianchi TS, Canuel EA (2011) Chemical biomarkers in aquatic ecosystems. Princeton University Press, PrincetonCrossRefGoogle Scholar
  8. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917CrossRefGoogle Scholar
  9. Boschker HTS, de Brouwer JFC, Cappenberg TE (1999) The contribution of macrophyte-derived organic matter to microbial biomass in salt-marsh sediments: stable carbon isotope analysis of microbial biomarkers. Limnol Oceanogr 44:309–319CrossRefGoogle Scholar
  10. Bouillon S, Boschker HTS (2006) Bacterial carbon sources in coastal sediments: a cross-system analysis based on stable isotope data of biomarkers. Biogeosciences 3:175–185. doi: 10.5194/bg-3-175-2006 CrossRefGoogle Scholar
  11. Bowling DR, McDowell NG, Bond BJ, Law BE, Ehleringer JR (2002) 13C content of ecosystem respiration is linked to precipitation and vapor pressure deficit. Oecologia 131:113–124. doi: 10.1007/s00442-001-0851-y CrossRefGoogle Scholar
  12. Butler JL, Williams MA, Bottomley PJ, Myrold DD (2003) Microbial community dynamics associated with rhizosphere carbon flow. Appl Environ Microbiol 69:6793–6800. doi: 10.1128/aem.69.11.6793-6800.2003 CrossRefGoogle Scholar
  13. Canuel EA, Freeman KH, Wakeham SG (1997) Isotopic compositions of lipid biomarker compounds in estuarine plants and surface sediments. Limnol Oceanogr 42:1570–1583CrossRefGoogle Scholar
  14. Cardon ZG, Gage DJ (2006) Resource exchange in the rhizosphere: molecular tools and the microbial perspective. Annu Rev Ecol Evol Syst 37:459–488. doi: 10.2307/30033840 CrossRefGoogle Scholar
  15. Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC (2003) Global carbon sequestration in tidal, saline wetland soils. Glob Biogeochem Cycles 17:1111. doi: 10.1029/2002gb001917 CrossRefGoogle Scholar
  16. Chmura GL, Kellman L, Guntenspergen GR (2011) The greenhouse gas flux and potential global warming feedbacks of a northern macrotidal and microtidal salt marsh. Environ Res Lett 6:044016CrossRefGoogle Scholar
  17. Conrad R, Klose M (2011) Stable carbon isotope discrimination in rice field soil during acetate turnover by syntrophic acetate oxidation or acetoclastic methanogenesis. Geochim Cosmochim Acta 75:1531–1539. doi: 10.1016/j.gca.2010.12.019 CrossRefGoogle Scholar
  18. Cornell JA, Craft CB, Megonigal JP (2007) Ecosystem gas exchange across a created salt marsh chronosequence. Wetlands 27:240–250. doi: 10.1672/0277-5212(2007)27[240:egeaac]2.0.co;2 CrossRefGoogle Scholar
  19. Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP (2002) Stable isotopes in plant ecology. Annu Rev Ecol Syst 33:507–559. doi: 10.2307/3069272 CrossRefGoogle Scholar
  20. Denef K, Bubenheim H, Lenhart K, Vermeulen J, Van Cleemput O, Boeckx P, Müller C (2007) Community shifts and carbon translocation within metabolically-active rhizosphere microorganisms in grasslands under elevated CO2. Biogeosciences 4:769–779. doi: 10.5194/bg-4-769-2007 CrossRefGoogle Scholar
  21. Dowling NJE, Widdel F, White DC (1986) Phospholipid ester-linked fatty acid biomarkers of acetate-oxidizing sulphate-reducers and other sulphide-forming bacteria. J Gen Microbiol 132:1815–1825. doi: 10.1099/00221287-132-7-1815 Google Scholar
  22. Drigo B, Kowalchuk GA, Knapp BA, Pijl AS, Boschker HTS, van Veen JA (2013) Impacts of 3 years of elevated atmospheric CO2 on rhizosphere carbon flow and microbial community dynamics. Glob Chang Biol 19:621–636. doi: 10.1111/gcb.12045 CrossRefGoogle Scholar
  23. Ekblad A, Hogberg P (2001) Natural abundance of 13C in CO2 respired from forest soils reveals speed of link between tree photosynthesis and root respiration. Oecologia 127:305–308. doi: 10.1007/s004420100667 CrossRefGoogle Scholar
  24. Emery HE, Fulweiler RW (2014) Spartina alterniflora and invasive Phragmites australis stands have similar greenhouse gas emissions in a New England marsh. Aquat Bot 116:83–92. doi: 10.1016/j.aquabot.2014.01.010 CrossRefGoogle Scholar
  25. Evershed RP, Crossman ZM, Bull ID, Mottram H, Dungait JAJ, Maxfield PJ, Brennand EL (2006) 13C-Labelling of lipids to investigate microbial communities in the environment. Curr Opin Biotechnol 17:72–82. doi: 10.1016/j.copbio.2006.01.003 CrossRefGoogle Scholar
  26. Fallon R, Pfaender F (1976) Production and fractionation of 14CO2 labeled smooth cordgrass, Spartina alterniflora. Chesap Sci 17:292–295. doi: 10.2307/1350517 CrossRefGoogle Scholar
  27. Ferguson RL, Williams RB (1974) A growth chamber for the production of 14C-labeled salt marsh plants and its application to smooth cordgrass, Spartina alterniflora Loisel. J Exp Mar Biol Ecol 14:251–259. doi: 10.1016/0022-0981(74)90006-9 CrossRefGoogle Scholar
  28. Gross MF, Hardisky MA, Wolf PL, Klemas V (1991) Relationship between aboveground and belowground biomass of Spartina alterniflora (smooth cordgrass). Estuaries 14:180–191. doi: 10.2307/1351692 CrossRefGoogle Scholar
  29. Guckert JB, Antworth CP, Nichols PD, White DC (1985) Phospholipid, ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. FEMS Microbiol Lett 31:147–158. doi: 10.1016/0378-1097(85)90016-3 CrossRefGoogle Scholar
  30. Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48:115–146. doi: 10.1023/a:1006244819642 CrossRefGoogle Scholar
  31. Hines ME, Evans RS, Sharak Genthner BR, Willis SG, Friedman S, Rooney-Varga JN, Devereux R (1999) Molecular phylogenetic and biogeochemical studies of sulfate-reducing bacteria in the rhizosphere of Spartina alterniflora. Appl Environ Microbiol 65:2209–2216Google Scholar
  32. Howarth RW, Teal JM (1979) Sulfate reduction in a New England salt marsh. Limnol Oceanogr 24:999–1013. doi: 10.2307/2835572 CrossRefGoogle Scholar
  33. Hwang Y-H, Morris JT (1992) Fixation of inorganic carbon from different sources and its translocation in Spartina alterniflora Loisel. Aquat Bot 43:137–147. doi: 10.1016/0304-3770(92)90039-L CrossRefGoogle Scholar
  34. Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321:5–33. doi: 10.1007/s11104-009-9925-0 CrossRefGoogle Scholar
  35. Kaneda T (1991) Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Mol Biol Rev 55:288–302Google Scholar
  36. Koretsky CM, Moore CM, Lowe KL, Meile C, DiChristina TJ, Van Cappellen P (2003) Seasonal oscillation of microbial iron and sulfate reduction in saltmarsh sediments (Sapelo Island, GA, USA). Biogeochemistry 64:179–203. doi: 10.1023/a:1024940132078 CrossRefGoogle Scholar
  37. Kuzyakov Y, Domanski G (2000) Carbon input by plants into the soil. Review. J Plant Nutr Soil Sci 163:421–431. doi: 10.1002/1522-2624(200008)163:4 CrossRefGoogle Scholar
  38. Lenssen GM, van Duin WE, Jak P, Rozema J (1995) The response of Aster tripolium and Puccinellia maritima to atmospheric carbon dioxide enrichment and their interactions with flooding and salinity. Aquat Bot 50:181–192. doi: 10.1016/0304-3770(95)00453-7 CrossRefGoogle Scholar
  39. Londry KL, Jahnke LL, Des Marais DJ (2004) Stable carbon isotope ratios of lipid biomarkers of sulfate-reducing bacteria. Appl Environ Microbiol 70:745–751. doi: 10.1128/aem.70.2.745-751.2004 CrossRefGoogle Scholar
  40. Lu Y, Conrad R (2005) In situ stable isotope probing of methanogenic Archaea in the rice rhizosphere. Science 309:1088–1090. doi: 10.1126/science.1113435 CrossRefGoogle Scholar
  41. Lu Y, Watanabe A, Kimura M (2002) Contribution of plant-derived carbon to soil microbial biomass dynamics in a paddy rice microcosm. Biol Fertil Soils 36:136–142. doi: 10.1007/s00374-002-0504-2 CrossRefGoogle Scholar
  42. Lu Y, Murase J, Watanabe A, Sugimoto A, Kimura M (2004) Linking microbial community dynamics to rhizosphere carbon flow in a wetland rice soil. FEMS Microbiol Ecol 48:179–186. doi: 10.1016/j.femsec.2004.01.004 CrossRefGoogle Scholar
  43. Lu Y, Abraham W-R, Conrad R (2007) Spatial variation of active microbiota in the rice rhizosphere revealed by in situ stable isotope probing of phospholipid fatty acids. Environ Microbiol 9:474–481. doi: 10.1111/j.1462-2920.2006.01164.x CrossRefGoogle Scholar
  44. Lytle RW, Hull RJ (1980a) Photoassimilate distribution in Spartina alterniflora Loisel. I. Vegetative and floral development. Agron J 72:933–938. doi: 10.2134/agronj1980.00021962007200060017x CrossRefGoogle Scholar
  45. Lytle RW, Hull RJ (1980b) Photoassimilate distribution in Spartina alterniflora Loisel. II. Autumn and winter storage and spring regrowth. Agron J 72:938–942. doi: 10.2134/agronj1980.00021962007200060018x CrossRefGoogle Scholar
  46. Magenheimer JF, Moore TR, Chmura GL, Daoust RJ (1996) Methane and carbon dioxide flux from a macrotidal salt marsh, Bay of Fundy, New Brunswick. Estuaries 19:139–145. doi: 10.2307/1352658 CrossRefGoogle Scholar
  47. McLeod E et al (2011) A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9:552–560. doi: 10.1890/110004 CrossRefGoogle Scholar
  48. Megonigal JP, Whalen SC, Tissue DT, Bovard BD, Allen AS, Albert DB (1999) A plant-soil-atmosphere microcosm for tracing radiocarbon from photosynthesis through methanogenesis. Soil Sci Soc Am J 63:665–671. doi: 10.2136/sssaj1999.03615995006300030033x CrossRefGoogle Scholar
  49. Middelburg JJ, Barranguet C, Boschker HTS, Herman PMJ, Moens T, Heip CHR (2000) The fate of intertidal microphytobenthos carbon: an in situ 13C-labeling study. Limnol Oceanogr 45:1224–1234. doi: 10.4319/lo.2000.45.6.1224 CrossRefGoogle Scholar
  50. Neubauer SC, Givler K, Valentine S, Megonigal JP (2005) Seasonal patterns and plant-mediated controls of subsurface wetland biogeochemistry. Ecology 86:3334–3344. doi: 10.1890/04-1951 CrossRefGoogle Scholar
  51. Parkes JR, Brock F, Banning N, Hornibrook ERC, Roussel EG, Weightman AJ, Fry JC (2012) Changes in methanogenic substrate utilization and communities with depth in a salt-marsh, creek sediment in southern England. Estuar Coast Shelf Sci 96:170–178. doi: 10.1016/j.ecss.2011.10.025 CrossRefGoogle Scholar
  52. Paterson E (2003) Importance of rhizodeposition in the coupling of plant and microbial productivity. Eur J Soil Sci 54:741–750. doi: 10.1046/j.1351-0754.2003.0557.x CrossRefGoogle Scholar
  53. Perry GJ, Volkman JK, Johns RB, Bavor HJ (1979) Fatty acids of bacterial origin in contemporary marine sediments. Geochim Cosmochim Acta 43:1715–1725CrossRefGoogle Scholar
  54. Phillips RP, Fahey TJ (2005) Patterns of rhizosphere carbon flux in sugar maple (Acer saccharum) and yellow birch (Betula allegheniensis) saplings. Glob Chang Biol 11:983–995. doi: 10.1111/j.1365-2486.2005.00959.x CrossRefGoogle Scholar
  55. Romanek CS, Zhang CL, Li Y, Horita J, Vali H, Cole DR, Phelps TJ (2003) Carbon and hydrogen isotope fractionations associated with dissimilatory iron-reducing bacteria. Chem Geol 195:5–16. doi: 10.1016/S0009-2541(02)00385-6 CrossRefGoogle Scholar
  56. Schultz DM, Quinn JG (1973) Fatty acid composition of organic detritus from Spartina alterniflora. Estuar Coast Mar Sci 1:177–190. doi: 10.1016/0302-3524(73)90068-6 CrossRefGoogle Scholar
  57. Sessions AL (2006) Seasonal changes in D/H fractionation accompanying lipid biosynthesis in Spartina alterniflora. Geochim Cosmochim Acta 70:2153–2162. doi: 10.1016/j.gca.2006.02.003 CrossRefGoogle Scholar
  58. Swinnen J, Van Veen JA, Merckx R (1994) 14C pulse-labelling of field-grown spring wheat: an evaluation of its use in rhizosphere carbon budget estimations. Soil Biol Biochem 26:161–170. doi: 10.1016/0038-0717(94)90159-7 CrossRefGoogle Scholar
  59. Taylor J, Parkes RJ (1985) Identifying different populations of sulfate-reducing bacteria within marine sediment systems, using fatty-acid biomarkers. J Gen Microbiol 131:631–642Google Scholar
  60. Teece MA, Fogel ML, Dollhopf ME, Nealson KH (1999) Isotopic fractionation associated with biosynthesis of fatty acids by a marine bacterium under oxic and anoxic conditions. Org Geochem 30:1571–1579. doi: 10.1016/S0146-6380(99)00108-4 CrossRefGoogle Scholar
  61. Treonis AM, Ostle NJ, Stott AW, Primrose R, Grayston SJ, Ineson P (2004) Identification of groups of metabolically-active rhizosphere microorganisms by stable isotope probing of PLFAs. Soil Biol Biochem 36:533–537. doi: 10.1016/j.soilbio.2003.10.015 CrossRefGoogle Scholar
  62. Valiela I, Teal JM, Persson NY (1976) Production and dynamics of experimental enriched salt marsh vegetation: belowground biomass. Limnol Oceanogr 21:245–252CrossRefGoogle Scholar
  63. Van Der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310. doi: 10.1111/j.1461-0248.2007.01139.x CrossRefGoogle Scholar
  64. Volkman JK, Johns RB, Gillan FT, Perry GJ, Bavor HJ (1980) Microbial lipids of an intertidal sediment–I. Fatty acids and hydrocarbons. Geochim Cosmochim Acta 44:1133–1143CrossRefGoogle Scholar
  65. Volkman JK, Barrett SM, Blackburn SI, Mansour MP, Sikes EL, Gelin F (1998) Microalgal biomarkers: a review of recent research developments. Org Geochem 29:1163–1179CrossRefGoogle Scholar
  66. Wang XC, Chen RF, Berry A (2003) Sources and preservation of organic matter in Plum Island salt marsh sediments (MA, USA): long-chain n-alkanes and stable carbon isotope compositions. Estuar Coast Shelf Sci 58:917–928. doi: 10.1016/j.ecss.2003.07.006 CrossRefGoogle Scholar
  67. Weston NB, Neubauer SC, Velinsky DJ, Vile MA (2014) Net ecosystem carbon exchange and the greenhouse gas balance of tidal marshes along an estuarine salinity gradient. Biogeochemistry 120:163–189. doi: 10.1007/s10533-014-9989-7 CrossRefGoogle Scholar
  68. Whiting GJ, Gandy EL, Yoch DC (1986) Tight coupling of root-associated nitrogen fixation and plant photosynthesis in the salt marsh grass Spartina alterniflora and carbon dioxide enhancement of nitrogenase activity. Appl Environ Microbiol 52:108–113Google Scholar
  69. Yao H, Thornton B, Paterson E (2012) Incorporation of 13C-labelled rice rhizodeposition carbon into soil microbial communities under different water status. Soil Biol Biochem 53:72–77. doi: 10.1016/j.soilbio.2012.05.006 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Marine Chemistry & Geochemistry DepartmentWoods Hole Oceanographic InstitutionWoods HoleUSA
  2. 2.Haverford CollegeHaverfordUSA
  3. 3.School of Earth and Ocean SciencesUniversity of VictoriaVictoriaCanada

Personalised recommendations