, Volume 123, Issue 1–2, pp 99–116 | Cite as

Influence of legacy phosphorus, land use, and climate change on anthropogenic phosphorus inputs and riverine export dynamics

  • Dingjiang Chen
  • Minpeng Hu
  • Yi Guo
  • Randy A. Dahlgren


A quantitative understanding of riverine phosphorus (P) export in response to changes in anthropogenic P inputs (NAPI), land use and climate is critical for developing effective watershed P control measures. This study indicated that annual riverine TP export for the six catchments of the Yongan River watershed in eastern China increased 4.1–30.3-fold over the 1980–2010 period. Increased riverine TP export resulted from a 61–85 % increase in NAPI and a 2.6–14.6-fold increase in riverine export fraction of NAPI due to 36–43, 30–125, and 65–76 % increases in developed land area (D%), drained agricultural land area (DA%), and storm events, respectively. For the 31-year cumulative record, 1.6–14 % of NAPI was exported by rivers, 40–64 % was stored in the upper 20 cm of agricultural soils, and 30–55 % was retained in other landscape positions. An empirical model that incorporates annual NAPI, precipitation, D%, and DA% accounted for 94 % of the variation in annual riverine TP fluxes across the six catchments and 31 years. The model estimated that NAPI and legacy P contributed 42–92 % and 8–58 % of annual riverine TP flux, respectively. The model forecasts an 8–18 % increase in riverine TP flux by 2030 due to a 4 % increase in precipitation with no changes in NAPI and land use compared to the 2000–2010 baseline condition. Enhanced export of NAPI and legacy P by changes in land use and climate will delay the decrease in riverine P flux in response to NAPI reductions and should be considered in developing and assessing watershed P management strategies.


Phosphorus Legacy nutrients Land use Nutrient budget Climate change Eutrophication 



We thank the local government for providing data critical for this investigation. This work was supported by the National Natural Science Foundation of China (41371010), Zhejiang Provincial Natural Science Foundation of China (LY13D010002), and Chinese National Key Technology R&D Program (2012BAC17B01).

Conflict of interest

This study has no conflict of interest with any persons or affiliations.

Supplementary material

10533_2014_55_MOESM1_ESM.doc (1.3 mb)
Supplementary material 1 (DOC 1350 kb)


  1. Bennett EM, Reed-Andersen T, Houser JN, Gabriel JR, Carpenter SR (1999) A phosphorus budget for the Lake Mendota watershed. Ecosystems 2:69–75. doi: 10.1007/s100219900059 CrossRefGoogle Scholar
  2. Borbor-Cordova MJ, Boyer EW, McDowell WH, Hall CA (2006) Nitrogen and phosphorus budgets for a tropical watershed impacted by agricultural land use: Guayas, Ecuador. Biogeochemistry 79:135–161. doi: 10.1007/s10533-006-9009-7 CrossRefGoogle Scholar
  3. Bowes J, Jarviea HP, Naden PS, Old GH, Scarlett PM, Roberts C, Armstrong LK, Harman SA, Wickham HD, Collins AL (2014) Identifying priorities for nutrient mitigation using river concentration–flow relationships: the Thames basin, UK. J Hydrol 571:1–12. doi: 10.1016/j.jhydrol.2014.03.063 CrossRefGoogle Scholar
  4. Bundy LG, Sturgul SJ (2001) A phosphorus budget for Wisconsin cropland. J Soil Water Conserv 56:243–249Google Scholar
  5. Cao N, Chen XP, Cui ZL, Zhang FS (2012) Change in soil available phosphorus in relation to the phosphorus budget in China. Nutr Cycl Agroecosyst 94:161–170. doi: 10.1007/s10705-012-9530-0 CrossRefGoogle Scholar
  6. Chen D, Dahlgren RA, Lu J (2013) A modified load apportionment model for identifying point and diffuse source nutrient inputs to rivers from stream monitoring data. J Hydrol 501:25–34. doi: 10.1016/j.jhydrol.2013.07.034 CrossRefGoogle Scholar
  7. Chen D, Hu M, Dahlgren RA (2014) A dynamic watershed model for determining the effects of transient storage on nitrogen export to rivers. Water Resour Res 50:7714–7730. doi: 10.1002/2014WR01585 CrossRefGoogle Scholar
  8. Condron LM, Spears BM, Haygarth PM, Turner BL, Richardson AE (2013) Role of legacy phosphorus in improving global phosphorus-use efficiency. Environ Dev 8:147–148. doi: 10.1016/j.envdev.2013.09.003 CrossRefGoogle Scholar
  9. David MB, Gentry LE (2000) Anthropogenic inputs of nitrogen and phosphorus and riverine export for Illinois, USA. J Environ Qual 29:494–508. doi: 10.2134/jeq2000.00472425002900020018x CrossRefGoogle Scholar
  10. Dunne EJ, Clark MW, Corstanje R, Reddy KR (2011) Legacy phosphorus in subtropical wetland soils: influence of dairy, improved and unimproved pasture land use. Ecol Eng 37:1481–1491. doi: 10.1016/j.ecoleng.2011.04.003 CrossRefGoogle Scholar
  11. Fisher J, Acreman JC (2005) Wetland nutrient removal: a review of the evidence. Hydrol Earth Syst Sci 8:673–685. doi: 10.5194/hess-8-673-2004 CrossRefGoogle Scholar
  12. Gentry LE, David MB, Royer TV, Mitchell CA, Starks KM (2007) Phosphorus transport pathways to streams in tile-drained agricultural watersheds. J Environ Qual 36:408–415. doi: 10.2134/jeq2006.0098 CrossRefGoogle Scholar
  13. Hamilton SK (2012) Biogeochemical time lags may delay responses of streams to ecological restoration. Freshw Biol 57:43–57. doi: 10.1111/j.1365-2427.2011.02685.x CrossRefGoogle Scholar
  14. Han H, Bosch N, Allan JD (2011a) Spatial and temporal variation in phosphorus budgets for 24 watersheds in the Lake Erie and Lake Michigan basins. Biogeochemistry 102:45–58. doi: 10.1007/s10533-010-9420-y CrossRefGoogle Scholar
  15. Han YG, Li XY, Nan Z (2011b) Net anthropogenic phosphorus accumulation in the Beijing metropolitan region. Ecosystems 14:445–457. doi: 10.1007/s10021-011-9420-3 CrossRefGoogle Scholar
  16. Han YG, Yu XX, Wang XX, Wang YQ, Tian JX, Xu L, Wang CZ (2013) Net anthropogenic phosphorus inputs (NAPI) index application in Mainland China. Chemosphere 90:329–337. doi: 10.1016/j.chemosphere.2012.07.023 CrossRefGoogle Scholar
  17. Haygarth PM, Jarvie HP, Powers SM, Sharpley AN, Elser JJ, Shen JB, Peterson HM, Chan NI, Howden NJK, Burt T, Worrall F, Zhang FS, Liu XJ (2014) Sustainable phosphorus management and the need for a long-term perspective: the legacy hypothesis. Environ Sci Technol 48:8417–8419. doi: 10.1021/es502852 CrossRefGoogle Scholar
  18. Holman IP, Whelan MJ, Howden NJK, Bellamy PH, Willby NJ, Rivas-Casado M, McConvey P (2008) Phosphorus in groundwater: an overlooked contributor to eutrophication? Hydrol Process 22:5121–5127. doi: 10.1002/hyp.7198 CrossRefGoogle Scholar
  19. Hong B, Swaney DP, Mörth C-M, Smedberg E, Hägg EH, Humborg C, Howarth RW, Bouraoui F (2012) Evaluating regional variation of net anthropogenic nitrogen and phosphorus inputs (NANI/NAPI), major drivers, nutrient retention pattern and management implications in the multinational areas of Baltic Sea basin. Ecol Model 227:117–135. doi: 10.1016/j.ecolmodel.2011.12.002 CrossRefGoogle Scholar
  20. Jarvie HP, Sharpley AN, Withers PJA, Scott JT, Haggard BE, Neal C (2013) Phosphorus mitigation to control river eutrophication: murky waters, inconvenient truths and ‘post-normal’ science. J Environ Qual 42:295–304. doi: 10.2134/jeq2012.0085 CrossRefGoogle Scholar
  21. Jarvie HP, Sharpley AN, Brahana V, Simmons T, Price A, Neal C, Lawlor AJ, Sleep D, Thacker S, Haggard BE (2014) Phosphorus retention and remobilization along hydrological pathways in Karst Terrain. Environ Sci Technol 48:4860–4868. doi: 10.1021/es405585b CrossRefGoogle Scholar
  22. Kleinman PJA, Srinivasan MS, Dell CJ, Schimidt JP, Sharpley AN, Bryant RB (2006) Role of rainfall intensity and hydrology in nutrient transport via surface runoff. J Environ Qual 35:1248–1259. doi: 10.2134/jeq2006.0015 CrossRefGoogle Scholar
  23. Kleinman PJA, Sharpley AN, McDowell RW, Flaten DN, Buda AR, Tao L, Bergstrom L, Zhu Q (2011) Managing agricultural phosphorus for water quality protection: principles for progress. Plant Soil 349:169–182. doi: 10.1007/s11104-011-0832-9 CrossRefGoogle Scholar
  24. Liu Y (2005) Phosphorus flows in China: physical profiles and environmental regulation. Dissertation, Wageningen UniversityGoogle Scholar
  25. Ma DC, Hu SY, Chen DJ, Li YR (2013) The temporal evolution of anthropogenic phosphorus consumption in China and its environmental implications. J Ind Ecol 17:566–577. doi: 10.1111/jiec.12009 CrossRefGoogle Scholar
  26. McMahon G, Woodside M (1997) Nutrient mass balance for the Albemarle-Pamlico drainage basin, North Carolina and Virginia, 1990. J Am Water Resour Assoc 33:573–589. doi: 10.1111/j.1752-1688.1997.tb03533.x CrossRefGoogle Scholar
  27. Meals DW, Dressing SA, Davenport TE (2010) Lag time in water quality response to best management practices: a review. J Environ Qual 39:85–96. doi: 10.2134/jeq2009.0108 CrossRefGoogle Scholar
  28. Mo HX, Qiu HG, Wang JX, Bai JF (2011) Livestock and poultry excreta treatment and its influencing factors in China. Agro-environ Dev 28:59–64 (in Chinese with English abstract)Google Scholar
  29. Morse NB, Wollheim WM (2014) Climate variability masks the impacts of land use change on nutrient export in a suburbanizing watershed. Biogeochemistry 121:45–59. doi: 10.1007/s10533-014-9998-6 CrossRefGoogle Scholar
  30. Némery J, Garnier J, Morel C (2005) Phosphorus budget in the Marne Watershed (France): urban vs. diffuse sources, dissolved vs. particulate forms. Biogeochemistry 72:35–66. doi: 10.1007/s10533-004-0078-1 CrossRefGoogle Scholar
  31. Penn C, McGrath J, Bowen J, Wilson S (2014) Phosphorus removal structures: a management option for legacy phosphorus. J Soil Water Conserv 69:51A–56A. doi: 10.2489/jswc.69.2.51A CrossRefGoogle Scholar
  32. PGZP (The People’s Government of Zhejiang Province) (2010) The response program for climate change of Zhejiang Province in China. Available online at: Accessed 26 June 2014
  33. Puustinen M, Tattari S, Koskiaho J, Linjama J (2007) Influence of seasonal and annual hydrological variations on erosion and phosphorus transport from arable areas in Finland. Soil Tillage Res 93:44–55. doi: 10.1016/j.still.2006.03.011 CrossRefGoogle Scholar
  34. Reddy KR, Newman S, Osborne TZJ, White R, Fitz HC (2011) Phosphorus cycling in the Everglades ecosystem: legacy phosphorus implications for management and restoration. Crit Rev Environ Sci Technol 41:149–186. doi: 10.1080/10643389.2010.530932 CrossRefGoogle Scholar
  35. Reddy KR, Clark MW, Nair VD (2012) Legacy phosphorus in agricultural watersheds: Implications for restoration and management of wetlands and aquatic systems. International atomic energy agency (IAEA) newsletter. Available online at: Accessed 26 June 2014
  36. Roy JW, Bickerton G (2014) Elevated dissolved phosphorus in riparian groundwater along gaining urban streams. Environ Sci Technol 48:1492–1498. doi: 10.1021/es404801y CrossRefGoogle Scholar
  37. Runkel RL, Crawford CG, Cohn TA (2004) Load estimator (loadest): a Fortran program for estimating constituent loads in streams and rivers. Available online at: Accessed 26 June 2014
  38. Russell MJ, Weller DE, Jordan TE, Sigwart KJ, Sullivan KJ (2008) Net anthropogenic phosphorus inputs: spatial and temporal variability in the Chesapeake Bay region. Biogeochemistry 88:285–304. doi: 10.1007/s10533-008-9212-9 CrossRefGoogle Scholar
  39. Sattari SZ, Bouwman AF, Giller KE, van Ittersum MK (2012) Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proc Natl Acad Sci 109:6348–6353. doi: 10.1073/pnas.1113675109 CrossRefGoogle Scholar
  40. Sharpley AN, Kleinman PJA, McDowell RW, Gitau M, Bryant RB (2002) Modeling phosphorus transport in agricultural watersheds: processes and possibilities. J Soil Water Conserv 57:425–439Google Scholar
  41. Sharpley AN, Kleinman PJA, Heathwaite AL, Gburek WJ, Folmar GJ, Schmidt JP (2008) Phosphorus loss from an agricultural watershed as a function of storm size. J Environ Qual 37:362–368. doi: 10.2134/jeq2007.0366 CrossRefGoogle Scholar
  42. Sharpley AN, Kleinman PJA, Jordan P, Bergstrom L, Allen AL (2009) Evaluating the success of phosphorus management from field to watershed. J Environ Qual 38:1981–1988. doi: 10.2134/jeq2008.0056 CrossRefGoogle Scholar
  43. Sharpley AN, Jarvie HP, Buda A, May L, Spears B, Kleinman P (2013) Phosphorus legacy: overcoming the effects of past management practices to mitigate future water quality impairment. J Environ Qual 42:1308–1326. doi: 10.2134/jeq2013.03.0098 CrossRefGoogle Scholar
  44. Shen RP, Sun B, Zhao QG (2005) Spatial and temporal variability of N, P and K balances for agroecosystems in China. Pedosphere 15:347–355Google Scholar
  45. Shigaki F, Sharpley A, Prochnow LI (2007) Rainfall intensity and phosphorus source effects on phosphorus transport in surface runoff from soil trays. Sci Total Environ 373:334–343. doi: 10.1016/j.scitotenv.2006.10.048 CrossRefGoogle Scholar
  46. Sobota DJ, Harrison JA, Dahlgren RA (2011) Linking dissolved and particulate phosphorus export in rivers draining California’s Central Valley with anthropogenic sources at the regional scale. J Environ Qual 40:1290–1302. doi: 10.2134/jeq2011.0010 CrossRefGoogle Scholar
  47. USEPA 2002. National management measures to control nonpoint source pollution from agriculture. Available online at: Accessed 26 June 2014
  48. Xu D, Dell B, Malajczuk N, Gong M (2002) Effects of P fertilisation on productivity and nutrient accumulation in a Eucalyptus grandis × E. urophylla plantation in southern China. Forest Ecol Manag 161:89–100. doi: 10.1016/S0378-1127(01)00485-6 CrossRefGoogle Scholar
  49. Zhang TQ, MacKenzie AF, Liang BC, Drury CF (2004) Soil test phosphorus and phosphorus fractions with long-term phosphorus addition and depletion. Soil Sci Soc Am J 68:519–528. doi: 10.2136/sssaj2004.0519 CrossRefGoogle Scholar
  50. Zhang C, Tian HQ, Liu JY, Wang SQ, Liu ML, Pan SF, Shi XZ (2005) Pools and distributions of soil phosphorus in China. Glob Biogeochem Cycles. doi: 10.1029/2004GB002296 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Dingjiang Chen
    • 1
    • 2
  • Minpeng Hu
    • 1
    • 3
  • Yi Guo
    • 1
  • Randy A. Dahlgren
    • 4
  1. 1.College of Environmental Science and ResourcesZhejiang UniversityHangzhouChina
  2. 2.Ministry of Education Key Laboratory of Environment Remediation and Ecological HealthZhejiang UniversityHangzhouChina
  3. 3.Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant NutritionZhejiang UniversityHangzhouChina
  4. 4.Department of Land, Air and Water ResourcesUniversity of CaliforniaDavisUSA

Personalised recommendations