, Volume 122, Issue 2–3, pp 229–251 | Cite as

Impact of hydro-sedimentary processes on the dynamics of soluble reactive phosphorus in the Seine River

  • Lauriane Vilmin
  • Najla Aissa-Grouz
  • Josette Garnier
  • Gilles Billen
  • Jean-Marie Mouchel
  • Michel Poulin
  • Nicolas Flipo


This paper focuses on soluble reactive phosphorus (SRP) dynamics along a 225 km stretch of the Seine River, including the Paris urban area, for the 2007–2011 period. The impact of hydro-sedimentary processes on SRP concentrations and fluxes is estimated under various hydrological conditions. Sorption interaction parameters between SRP and suspended matter are experimentally determined on river water samples and are included in a hydro-ecological model. Simulated concentrations are compared to weekly measurements at 11 monitoring stations. The introduction of sorption in the model reduces the root mean square error of simulated SRP concentrations by 20 % and allows the simulation of particulate inorganic P (PIP) accumulation in the system. With these ameliorations, the model constitutes a reliable management tool, which is compatible with the requirements of new regulations as the European Water Framework Directive. P mass balances are assessed upstream and downstream the major waste water treatment plant of the Paris urban area. P fluxes in the system are mainly driven by hydrological conditions and sediment-related processes. While SRP is the predominant P form during low flow, PIP accounts for more than 70 % of the total P during high flow. Moreover, SRP sorption fluxes are of the same order of magnitude as biotic fluxes affecting SRP concentrations. According to the model, and based on all the available data, 75 % of the SRP release by the river bed sediments occurs during high flow periods, and PIP exchanges at the sediment–water interface are more than 4 times higher during high flow periods than during low flow periods.


Soluble reactive phosphorus Particulate inorganic phosphorus Hydro-sedimentary processes Hydro-ecological modelling Sorption Sediment–water fluxes 



This research project was funded by the Carboseine, R2DS Île-de-France and the PIREN-Seine research programs. The authors are part of the Federation Île-de-France for Research on the Environment (FIRE FR3020 CNRS & UPMC). We are grateful to SIAAP (Public Sewage Company of the Greater Paris Area), to VNF (National Organisation for River Navigation) and to SEDIF (Syndicat des Eaux d’Île-de-France) for the data they supplied. We thank the ProSe PIREN-SIAAP working group for the enriching discussions on P simulation. We also wish to acknowledge the contribution of Chantal de Fouquet on the variographic analysis of the results. The authors would finally like to thank the two anonymous reviewers of the paper for their constructive comments.


  1. AFNOR (1994) NFT90-023 Qualité de l’eau—Dosage des orthophosphates, des polyphosphates et du phosphore total (Méthode spectrophotométrique). AFNORGoogle Scholar
  2. AFNOR (2005) NFT90-023 Qualité de l’eau—Dosage du phosphore—Méthode spectrométrique au molybdate d’ammonium. AFNORGoogle Scholar
  3. Andrieux-Loyer F, Aminot A (2001) Phosphorus forms related to sediment grain size and geochemical characteristics in French coastal areas. Estuar Coast Shelf Sci 52:617–629CrossRefGoogle Scholar
  4. Avilés A, Rodero J, Amores V, de Vicente I, Rodriguez MI, Niell FX (2006) Factors controlling phosphorus speciation in a Meditarranean basin (River Guadalfeo, Spain). J Hydrol 331:396–408CrossRefGoogle Scholar
  5. Belmont MA, White JR, Reddy KR (2009) Phosphorus sorption and potential phosphorus storage in sediments of Lake Istokpoga and the Upper Chain of Lakes, Florida, USA. J Environ Qual 38:987–996CrossRefGoogle Scholar
  6. Beven K (1989) Changing ideas in hydrology. The case of physically-based model. J Hydrol 105:157–172CrossRefGoogle Scholar
  7. Billen G, Garnier J, Hanset P (1994) Modelling phytoplankton development in whole drainage networks: the RIVERSTRAHLER model applied to the Seine river system. Hydrobiologia 289:119–137CrossRefGoogle Scholar
  8. Billen G, Garnier J, Deligne C, Billen C (1999) Estimates of early-industrial inputs of nutrients to river systems: implication for coastal eutrophication. Sci Total Environ 243(244):43–52CrossRefGoogle Scholar
  9. Billen G, Garnier J, Ficht A, Cun C (2001) Modeling the response of water quality in the Seine River estuary to human activity in its watershed over the last 50 years. Estuaries 24(6B):977–993CrossRefGoogle Scholar
  10. Billen G, Garnier J, Rousseau V (2005) Nutrient fluxes and water quality in the drainage network of the Scheldt basin over the last 50 year. Hydrobiologia 540(1–3):47–67CrossRefGoogle Scholar
  11. Billen G, Garnier J, Mouchel JM, Silvestre M (2007a) The Seine system: introduction to a multidisciplinary approach of the functioning of a regional river system. Sci Total Environ 375:1–12CrossRefGoogle Scholar
  12. Billen G, Garnier J, Némery J, Sebilo M, Sferratore A, Barles S, Benoit P, Benoît M (2007b) A long-term view of nutrient transfers through the Seine River continuum. Sci Total Environ 375:80–97. doi: 10.1016/j.scitotenv.2006.12.005 CrossRefGoogle Scholar
  13. Bubba MD, Arias C, Brix H (2003) Phosphorus adsorption maximum of sands for use as media in subsurface flow constructed reed beds as measured by the Langmuir isotherm. Water Res 37:3390–3400CrossRefGoogle Scholar
  14. Cao Z, Zhang X, Ai N (2011) Effect of sediment on concentration of dissolved phosphorus in the Three Gorges Reservoir. Int J Sediment Res 26:87–95CrossRefGoogle Scholar
  15. Caraco NF (1995) Phosphorus in the global environment, chap 14. In: Influence of human populations on P transfers to aquatic systems: a regional scale study using large rivers. Wiley, pp 235–244Google Scholar
  16. Chao X, Jia Y, Shields FD Jr, Wang SS, Cooper CM (2010) Three-dimensional numerical simulation of water quality and sediment-associated processes with application to a Mississippi Delta lake. J Environ Manag 91:1456–1466CrossRefGoogle Scholar
  17. Cladière M, Bonhomme C, Vilmin L, Gasperi J, Flipo N, Tassin B (2014) Modelling the fate of nonylphenolic compounds in the Seine River—part 1: determination of in-situ biodegradation rate constants. Sci Total Environ 468–469:1050–1058. doi: 10.1016/j.scitotenv.2013.09.028 CrossRefGoogle Scholar
  18. Cotner JB, Wetzel RG (1992) Uptake of dissolved inorganic and organic phosphorus compounds by phytoplankton and bacterioplankton. Limnol Oceanogr 37(2):232–243CrossRefGoogle Scholar
  19. Cross WF, Benstead JP, Frost PC, Thomas SA (2005) Ecological stoichiometry in freshwater benthic systems: recent progress and perspectives. Freshw Biol 50:1895–1912CrossRefGoogle Scholar
  20. Crossman J, Whitehead PJ, Futter MN, Jin L, Shahgedanova M, Castellazzi M, Wade AJ (2013) The interactive responses of water quality and hydrology to changes in multiple stressors, and implications for the long-term effective management of phosphorus. Sci Total Environ 454–455:230–244CrossRefGoogle Scholar
  21. Dorioz JM, Cassel EA, Orand A, Eisenman KG (1998) Phosphorus storage, transport and export dynamics in the Foron River watershed. Hydrol Process 12:285–309CrossRefGoogle Scholar
  22. Dubus I (1997) La rétention du phosphore dans les sols: principe d’étude, modélisation, mécanismes et compartiments du sol impliqués. Tech. rep, ORSTOM, Institut français de recherche scientifique pour le développement en coopérationGoogle Scholar
  23. Dubus I, Brouw CD, Beulke S (2003) Sensitivity analysis for four pesticide leaching models. Pest Manag Sci 59:962–982CrossRefGoogle Scholar
  24. Ebel BA, Loague K (2006) Physics-based hydrologic-response simulation: seeing through the fog of equifinality. Hydrol Process 20:2887–2900CrossRefGoogle Scholar
  25. Eberlein K, Kattner G (1987) Automatic method for the determination of orthophosphate and dissolved phosphorus in the marine environment. Frezenius Z Anal Chem 326:354–357CrossRefGoogle Scholar
  26. Even S, Poulin M, Garnier J, Billen G, Servais P, Chesterikoff A, Coste M (1998) River ecosystem modelling: application of the ProSe model to the Seine river (France). Hydrobiologia 373:27–37CrossRefGoogle Scholar
  27. Even S, Mouchel JM, Servais P, Le Hir P, Thouvenin B, Poulin M, Garnier J (2000) Suspended matter and ecological behaviour of rivers and estuaries. Conceptual and numerical modelling. Verh Intern Verein Limnol 27:238–241Google Scholar
  28. Even S, Poulin M, Mouchel JM, Seidl M, Servais P (2004) Modelling oxygen deficits in the Seine river downstream of combined sewer overflows. Ecol Model 173:177–196CrossRefGoogle Scholar
  29. Even S, Mouchel JM, Servais P, Flipo N, Poulin M, Blanc S, Chabanel M, Paffoni C (2007a) Modeling the impacts of Combined Sewer Overflows on the river Seine water quality. Sci Total Environ 375(1–3):140–151. doi: 10.1016/j.scitotenv.2006.12.007 CrossRefGoogle Scholar
  30. Even S, Thouvenin B, Bacq N, Billen G, Garnier J, Guézennec L, Blanc S, Ficht A, Hir PL (2007b) An integrated modelling approach to forecast the impact of human pressure in the Seine estuary. Hydrobiologia 588(1):13–29. doi: 10.1007/s10750-007-0649-y CrossRefGoogle Scholar
  31. Fauvet G, Claret C, Marmonier P (2001) Influence of benthic and interstitial processes on nutrient changes along a regulated reach of a large river (Rhône River, France). Hydrobiologia 441:121–131CrossRefGoogle Scholar
  32. Félix R, Xanthoulis D (2005) Sensitivity analysis of mathematical model “erosion productivity impact calculator” (EPIC) by approach one-factor-at-a-time (OAT). Biotechnol Agron Soc Environ Int 9:179–190Google Scholar
  33. Flipo N, Even S, Poulin M, Tusseau-Vuillemin MH, Améziane T, Dauta A (2004) Biogeochemical modelling at the river scale: plankton and periphyton dynamics—Grand Morin case study, France. Ecol Model 176:333–347CrossRefGoogle Scholar
  34. Flipo N, Rabouille C, Poulin M, Even S, Tusseau-Vuillemin M, Lalande M (2007) Primary production in headwater streams of the Seine basin: the Grand Morin case study. Sci Total Environ 375:98–109. doi: 10.1016/j.scitotenv.2006.12.015 CrossRefGoogle Scholar
  35. Flipo N, Monteil C, Poulin M, de Fouquet C, Krimissa M (2012) Hybrid fitting of a hydrosystem model: long term insight into the Beauce aquifer functioning (France). Water Resour Res 48(W05):509. doi: 10.1029/2011WR011092 Google Scholar
  36. de Fouquet C, Flipo N, Létinois L, Malherbe L, Polus-Lefebvre E, Poulin M, Ung A (2012) Which relation between deterministic simulations and observations? In: Ninth international geostatistics congress, Oslo, Norway, 11–15 June 2012Google Scholar
  37. Froelich PN (1988) Kinetic control of dissolved phosphate in natural rivers and estuaries: a primer on the phosphate buffer mechanism. Limnol Oceanogr 33(4):649–668CrossRefGoogle Scholar
  38. Garban B, Ollivon D, Poulin M, Gaultier V, Chesterikoff A (1995) Exchanges at the sediment–water interface in the river Seine, downstream from paris. Water Res 29(2):473–481CrossRefGoogle Scholar
  39. Garnier J, Billen G, Coste M (1995) Seasonal succession of diatoms and chlorophycae in the drainage network of the river Seine: observations and modelling. Limnol Oceanogr 40(4):750–765CrossRefGoogle Scholar
  40. Garnier J, Billen G, Hannon E, Fonbonne S, Videnina Y (2002) Modeling transfer and retention of nutrients in the drainage network of the Danube River. Estuar Coast Shelf 54:285–308CrossRefGoogle Scholar
  41. Garnier J, Némery J, Billen G, Théry S (2005) Nutrient dynamics and control of eutrophication in the Marne river system: modelling the role of exchangeable phosphorus. J Hydrol 304:397–412CrossRefGoogle Scholar
  42. Garnier J, Brion N, Callens J, Passy P, Deligne C, Billen G, Servais P, Billen C (2012) Modeling historical changes in nutrient delivery and water quality of the Zenne River (1790s–2010): the role of land use, waterscape and urban wastewater management. J Mar Syst 128:62–76. doi: 10.1016/j.jmarsys.2012.04.001 CrossRefGoogle Scholar
  43. Garnier J, Passy P, Thieu V, Callens J, Silvestre M, Billen G (2013) Biogeochemical dynamics in major river-coastal interfaces. Linkages with global change. In: Fate of nutrients in the aquatic continuum of the Seine River and its estuary: modeling the impacts of human activity changes in the watershed. Cambridge University Press, Cambridge, pp 530–553Google Scholar
  44. Heathwaite AL, Johnes PJ, Peters NE (1996) Trends in nutrients. Hydrol Process 10(2):263–293CrossRefGoogle Scholar
  45. Hecky RE, Kilham P (1988) Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichments. Limnol Oceanogr 33(4):796–822CrossRefGoogle Scholar
  46. Hoch MP, Kirchman DL (1993) Seasonal and inter-annual variability in bacterial production and biomass in a temperate estuary. Mar Ecol Prog Ser 98:283–295CrossRefGoogle Scholar
  47. House WA (2003) Geochemical cycling of phosphorus in rivers. Appl Geochem 18:739–748CrossRefGoogle Scholar
  48. House WA, Denison FH (2002) Exchange of inorganic phosphate between river waters and bed-sediments. Environ Sci Technol 36:4295–4301CrossRefGoogle Scholar
  49. House WA, Denison FH, Armitage PD (1995) Comparison of the uptake of inorganic phosphorus to a suspended and stream bed-sediment. Water Res 29:767–779CrossRefGoogle Scholar
  50. Houser JN, Richardson WB (2010) Nitrogen and phosphorus in the Upper Mississippi River: transport, processing, and effects on the river ecosystem. Hydrobiologia 640:71–88CrossRefGoogle Scholar
  51. Huang L, Fu L, Jin C, Gielen G, Lin X, Wang H, Zhang Y (2011) Effect of temperature on phosphorus sorption to sediments from shallow eutrophic lakes. Ecol Eng 37(10):1515–1522CrossRefGoogle Scholar
  52. Jalali M, Peikam EN (2013) Phosphorus sorption–desorption behaviour of river bed sediments in the Abshineh river, Hamedan, Iran, related to their composition. Environ Monit Assess 185(1):537–553CrossRefGoogle Scholar
  53. James WF, Barko JW (2004) Diffusive fluxes and equilibrium processes in relation to phosphorus dynamics in the Upper Mississippi River. River Res Appl 20(4):473–484CrossRefGoogle Scholar
  54. James WF, Larson CE (2008) Phosphorus dynamics and loading in the turbid Minnesota River (USA): controls and recycling potential. Biogeochemistry 90:75–92CrossRefGoogle Scholar
  55. Jarvie HP, Jürgens MD, Williams RJ, Neal C, Davis JJ, Barrett C, White J (2005) Role of river bed sediments as sources and sinks of phosphorus across two major eutrophic UK river basins: the Hampshire Avon and Herefordshire Wye. J Hydrol 304:51–74CrossRefGoogle Scholar
  56. Jarvie HP, Neal C, Withers PJA (2006) Sewage-effluent phosphorus: a greater risk to river eutrophication then agricultural phosphorus? Sci Total Environ 360:246–253CrossRefGoogle Scholar
  57. Kalbacher T, Delfs JO, Shao H, Wang W, Walther M, Samaniego L, Schneider C, Kumar R, Musolff A, Centler F, Sun F, Hildebrandt A, Liedl R, Borchardt D, Krebs P, Kolditz O (2012) The IWAS-ToolBox: software coupling for an integrated water resources management. Environ Earth Sci 65:1367–1380CrossRefGoogle Scholar
  58. La Jeunesse I (2001) Etude intégrée dynamique du phosphore dans le système bassin versant—lagune de Thau (mer Méditerranée, Hérault). PhD thesis, Université d’Orléans—IfremerGoogle Scholar
  59. Lancelot C, Gypens N, Billen G, Garnier J, Roubeix V (2007) Testing an integrated river–ocean mathematical tool for linking marine eutrophication to land use: the phaeocystis-dominated Belgian coastal zone (Southern North Sea) over the past 50 years. J Mar Syst 64:216–228. doi: 10.1016/j.jmarsys.2006.03.010 CrossRefGoogle Scholar
  60. Lei X, Cui B, Zhao H (2012) Study on the simulation of nutrient release from river inner source and its application—a case study of Guangzhou-Foshan river network, China. Procedia Environ Sci 2:1380–1392CrossRefGoogle Scholar
  61. Lencastre A (1966) Manuel d’hydraulique générale. Collection du centre de recherches et d’essais de Chatou, EyrollesGoogle Scholar
  62. León LF, Soulis ED, Kouwen N, Farquhar GJ (2001) Nonpoint source pollution: a distributed water quality modeling approach. Water Res 35(4):997–1007CrossRefGoogle Scholar
  63. Limousin G, Gaudet JP, Charlet L, Szenknect S, Barthès V, Krimissa M (2007) Sorption isotherms: a review on physical bases, modeling and measurements. Appl Geochem 22:249–275CrossRefGoogle Scholar
  64. Liu Y, Villalba G, Ayres RU, Schroder H (2008) Global phosphorus flows and environmental impacts from a consumption perspective. J Ind Ecol 12(2):229–247CrossRefGoogle Scholar
  65. Lopez P, Lluch X, Vidal M, Morguì JA (1996) Adsorption of phosphorus on sediments of the Balearic Islands (Spain) related to their composition. Estuar Coast Shelf Sci 42:185–196CrossRefGoogle Scholar
  66. Lotting NR, Stanley EH (2007) Benthic sediment influence on dissolved phosphorus concentrations in a headwater stream. Biogeochemistry 84:297–309CrossRefGoogle Scholar
  67. Mainstone CP, Parr W (2002) Phosphorus in rivers—ecology and management. Sci Total Environ 282–283:25–47CrossRefGoogle Scholar
  68. Melack JM (1995) Phosphorus in the Global Environment, chap 15. In: Transport and transformations of P, fluvial and lacustrine ecosystems. Wiley, pp 245–254Google Scholar
  69. Meybeck M (1982) Carbon, nitrogen, and phosphorus transport by world rivers. Am J Sci 282(4):401–450CrossRefGoogle Scholar
  70. Meybeck M, Moatar F (2012) Daily variability of river concentrations and fluxes: indicators based on the segmentation of the rating curve. Hydrol Process 26:1188–1207CrossRefGoogle Scholar
  71. Neal C, Heathwaite AL (2005) Nutrient mobility within river basins: a European perspective. J Hydrol 304:477–490. doi: 10.1016/j.jhydrol.2004.07.045 CrossRefGoogle Scholar
  72. Neal C, Jarvie HP, Love A, Neal M, Wickham H, Harman S (2008) Water quality along a river continuum subject to point and diffuse sources. J Hydrol 350:154–165. doi: 10.1016/j.jhydrol.2007.10.034 CrossRefGoogle Scholar
  73. Neal C, Jarvie HP, Williams R, Love A, Neal M, Wickham H, Harman S, Armstrong L (2010a) Declines in phosphorus concentration in the upper River Thames (UK): links to sewage effluent cleanup and extended end-member mixing analysis. Sci Total Environ 408:1315–1330CrossRefGoogle Scholar
  74. Neal C, Jarvie HP, Withers PJA, Whitton BA, Neal M (2010b) The strategic significance of wastewater sources to pollutant phosphorus levels in English rivers and to environmental management for rural, agricultural and urban catchments. Sci Total Environ 408:1485–1500CrossRefGoogle Scholar
  75. Neal C, Bowes M, Jarvie HP, Scholefield P, Leeks G, Neal M, Rowland P, Wickham H, Harman S, Armstrong L, Sleep D, Lawlor A, Davies C (2012) Lowland river water quality: a new UK data resource for process and environmental management analysis. Hydrol Process 26:949–960. doi: 10.1002/hyp.8344 CrossRefGoogle Scholar
  76. Némery J (2003) Origine et devenir du phosphore dans le continuum aquatique de la Seine des petits bassins amont à l’estuaire : Rôle du phosphore échangeable sur l’eutrophisation. PhD thesis, Université Paris VI—Pierre et Marie CurieGoogle Scholar
  77. Némery J, Garnier J (2007a) Origin and fate of phosphorus in the Seine watershed (France): agricultural and hydrographic P budgets. J Geophys Res 112:1–14. doi: 10.1029/2006JG000331 Google Scholar
  78. Némery J, Garnier J (2007b) Typical features of particulate phosphorus in the Seine estuary (France). Hydrobiologia 588:271–290. doi: 10.1007/s10750-007-0669-7 CrossRefGoogle Scholar
  79. Némery J, Garnier J, Morel C (2005) Phosphorus budget in the Marne Watershed (France): urban vs. diffuse sources, dissolved vs. particulate forms. Biogeochemistry 72(1):35–66CrossRefGoogle Scholar
  80. Parliament Council of the European Union (2000) Directive 2000/60/CE du 23 octobre 2000 établissant un cadre pour une politique communautaire dans le domaine de l’eauGoogle Scholar
  81. Passy P, Gypens N, Billen G, Garnier J, Thieu V, Rousseau V, Callens J, Parent JY, Lancelot C (2013) A model reconstruction of riverine nutrient fluxes and eutrophication in the Belgian Coastal Zone since 1984. J Mar Syst 128:106–122CrossRefGoogle Scholar
  82. Polus E, de Fouquet C, Flipo N, Poulin M (2010) Spatial and temporal caracterization of “river water bodies”. Revue des Sciences de l’Eau/J Water Sci 23(4):415–429Google Scholar
  83. Polus E, Flipo N, de Fouquet C, Poulin M (2011) Geostatistics for assessing the efficiency of distributed physically-based water quality model. Application to nitrates in the Seine River. Hydrol Process 25(2):217–233. doi:  10.1002/hyp.7838 CrossRefGoogle Scholar
  84. Pujo-Pay M, Conan P, Oriol L, Cornet-Barthaux V, Falco C, Ghiglione JF, Goyet C, Moutin T, Prieur L (2011) Integrated survey of elemental stoichiometry (C, N, P) from the western to eastern Mediterranean Sea. Biogeosciences 8:883–899CrossRefGoogle Scholar
  85. Reddy KR, Kadlec RH, Flaig E, Gale PM (1999) Phosphorus retention in streams and wetlands: a review. Crit Rev Environ Sci Technol 29(1):83–146CrossRefGoogle Scholar
  86. Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 64:205–221Google Scholar
  87. Richter S, Völker J, Borchardt D, Mohaupt V (2013) The water framework directive as an approach for integrated water resources management: results from the experiences in Germany on implementation, and future perspectives. Environ Earth Sci 69:719–728CrossRefGoogle Scholar
  88. Rocher V, Garcia-Gonzalez E, Paffoni C, Thomas W (2011) La production de nitrites lors de la dénitrification des eaux usées: un sujet sensible et complexe !. L’Eau, l’Industrie, les Nuisances 344:80–83Google Scholar
  89. Rodier J (1984) L’analyse de l’eau, 7e édn. DUNOD, ParisGoogle Scholar
  90. Rossi CG, Heil DM, Bonumà NB, Williams JR (2012) Evaluation of the Langmuir model in the soil and water assessment tool for a high soil phosphorus condition. Environ Model Softw 38:40–49CrossRefGoogle Scholar
  91. Schulz M, Herzog C (2004) The influence of sorption processes on the phosphorus mass balance in a eutrophic German Lowland River. Water Air Soil Pollut 155(1–4):291–301CrossRefGoogle Scholar
  92. Seitzinger S, Mayorga E, Bouwman A, Kroeze C, Beusen A, Billen G, Drecht GV, Dumont E, Fekete B, Garnier J (2010) Global river nutrient export: a scenario analysis of past and future trends. Global Biogeochem Cycles 24:GB0A08. doi: 10.1029/2009GB003587 Google Scholar
  93. Selig U, Schlungbaum G (2002) Longitudinal patterns of phosphorus and phosphorus binding in sediment of a lowland lake–river system. Hydrobiologia 472:67–76CrossRefGoogle Scholar
  94. Servais P, Garnier J (1993) Contribution of heterotrophic bacterial production to the carbon budget of the River Seine (France). Microb Ecol 25:19–33Google Scholar
  95. Servais P, Billen G, Garnier J, Idlafkih Z, Mouchel J, Seidl M, Meybeck M (1998) Carbone organique: origine et biodégradabilité. In: La Seine en son bassin. Elsevier, pp 483–525Google Scholar
  96. Smil V (2000) Phosphorus in the environment: natural flows and human interferences. Annu Rev Energy Environ 25:53–88CrossRefGoogle Scholar
  97. Steen I (1998) Phosphorus availability in the 21st century. Management of a non-renewable resource. Phosphorus Potassium 217:25–31Google Scholar
  98. Stumm W, Morgan JJ (1981) Aquatic chemistry, 2nd edn. Wiley, New YorkGoogle Scholar
  99. Stutter MI, Demars BOL, Langan SJ (2010) River phosphorus cycling: separating biotic and abiotic uptake during short-term changes in sewage effluent loading. Water Res 44:4425–4436CrossRefGoogle Scholar
  100. Takahashi M, Fujii K, Parsons TR (1973) Simulation study of phytoplankton photosynthesis and growth in the Fraser river estuary. Mar Biol 19:102–116CrossRefGoogle Scholar
  101. Thouvenot M, Billen G, Garnier J (2007) Modelling nutrient exchange at the sediment–water interface of river systems. J Hydrol 341:55–78CrossRefGoogle Scholar
  102. Turner RE, Rabalais NN (1994) Coastal eutrophication near the Mississippi river delta. Nature 368:619–621CrossRefGoogle Scholar
  103. Tusseau-Vuillemin MH, Garnier J, Servais P, Laroche L (2002) Charges domestiques spécifiques et rejets de station d’épuration. Tech. rep, PIREN-SeineGoogle Scholar
  104. Vervier P, Bonvallet-Garay S, Sauvage S, Valett HM, Sanchez-Pérez JM (2009) Influence of the hyporheic zone on phosphorus dynamics of a large gravel-bed river, Garonne River, France. Hydrol Process 23:1801–1812CrossRefGoogle Scholar
  105. Vilmin L, Flipo N, de Fouquet C, Poulin M (2014) Pluri-annual sediment budget in a navigated river system: the Seine River (France). Sci Total Environ. doi: 10.1016/j.scitotenv.2014.08.110
  106. Wade AJ, Whitehead PG, Butterfield D (2002) The integrated catchments model of phosphorus dynamics (INCA-P), a new approach for multiple source assessment in heterogeneous river systems: model structure and equations. Hydrol Earth Syst Sci 6(3):583–606CrossRefGoogle Scholar
  107. Wagener T, Sivapalan M, Troch PA, McGlynn BL, Harman CJ, Gupta HV, Kumar P, Rao PSC, Basu NB, Wilson JS (2010) The future of hydrology: an evolving science for a changing world. Water Resourses Research 46(W05):301. doi: 10.1029/2009WR008906
  108. Walling DE (1999) Linking land use, erosion and sediment yields in river basins. Hydrobiologia 410:223–240CrossRefGoogle Scholar
  109. Walling DE, Webb BW, Russell MA (1997) Sediment-associated nutrient transport in UK rivers. IAHS-AISH Publication 243:69–81Google Scholar
  110. Wang Q, Li Y (2010) Phosphorus adsorption and desorption behavior on sediments of different origins. J Soils Sediments 10(6):1159–1173CrossRefGoogle Scholar
  111. Wang Y, Shen Z, Niu J, Liu R (2009) Adsorption of phosphorus on sediments from the Three-Gorges Reservoir (China) and the relation with sediment compositions. J Hazard Mater 162(1):92–98CrossRefGoogle Scholar
  112. Wetzel RG (1983) Limnology, 2nd edn. Saunders College PublishingGoogle Scholar
  113. Withers PJA, Jarvie HP (2008) Delivery and cycling of phosphorus in rivers: a review. Sci Total Environ 400:379–395CrossRefGoogle Scholar
  114. Yuan Z, Liu X, Wu H, Zhang L, Bi J (2011) Anthropogenic phosphorus flow analysis of Lujiang County, Anhui Province, Central China. Ecol Modell 222:1534–1543CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Lauriane Vilmin
    • 1
    • 2
  • Najla Aissa-Grouz
    • 2
  • Josette Garnier
    • 2
    • 3
  • Gilles Billen
    • 2
    • 3
  • Jean-Marie Mouchel
    • 2
  • Michel Poulin
    • 1
  • Nicolas Flipo
    • 1
  1. 1.Geosciences DepartmentMINES ParisTech, PSL Research UniversityFontainebleau cedexFrance
  2. 2.Sorbonne Universités, UPMC Univ Paris 6, UMR 7619 METISParisFrance
  3. 3.CNRS, UMR 7619 METISParisFrance

Personalised recommendations