Skip to main content

Advertisement

Log in

Biodiversity effects on nitrate concentrations in soil solution: a Bayesian model

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Ecosystems are faced with high rates of species loss which has consequences for their functions and services. To assess the effects of plant species diversity on the nitrogen (N) cycle, we developed a model for monthly mean nitrate (NO3-N) concentrations in soil solution in 0–30 cm mineral soil depth using plant species and functional group richness and functional composition as drivers and assessing the effects of conversion of arable land to grassland, spatially heterogeneous soil properties, and climate. We used monthly mean NO3-N concentrations from 62 plots of a grassland plant diversity experiment from 2003 to 2006. Plant species richness (1–60) and functional group composition (1–4 functional groups: legumes, grasses, non-leguminous tall herbs, non-leguminous small herbs) were manipulated in a factorial design. Plant community composition, time since conversion from arable land to grassland, soil texture, and climate data (precipitation, soil moisture, air and soil temperature) were used to develop one general Bayesian multiple regression model for the 62 plots to allow an in-depth evaluation using the experimental design. The model simulated NO3-N concentrations with an overall Bayesian coefficient of determination of 0.48. The temporal course of NO3-N concentrations was simulated differently well for the individual plots with a maximum plot-specific Nash–Sutcliffe Efficiency of 0.57. The model shows that NO3-N concentrations decrease with species richness, but this relation reverses if more than approx. 25 % of legume species are included in the mixture. Presence of legumes increases and presence of grasses decreases NO3-N concentrations compared to mixtures containing only small and tall herbs. Altogether, our model shows that there is a strong influence of plant community composition on NO3-N concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Cable JM, Ogle K, Lucas RW, Huxman TE, Loik ME, Smith SD, Tissue DT, Ewers BE, Pendall E, Welker JM, Charlet TN, Cleary M, Griffith A, Nowak RS, Rogers M, Steltzer H, Sullivan PF, van Gestel NC (2011) The temperature responses of soil respiration in deserts: a seven desert synthesis. Biogeochemistry 103:71–90. doi:10.1007/s10533-010-9448-z

    Article  Google Scholar 

  • Christian DG, Riche AB (1998) Nitrate leaching losses under Miscanthus grass planted on a silty clay loam soil. Soil Use Manag 14:131–135

    Article  Google Scholar 

  • Clark JS (2005) Why environmental scientists are becoming Bayesians. Ecol Lett 8:2–14. doi:10.1111/j.1461-0248.2004.00702.x

    Article  Google Scholar 

  • Corre MD, Schnabel RR, Stout WL (2002) Spatial and seasonal variation of gross nitrogen transformations and microbial biomass in a northeastern US grassland. Soil Biol Biochem 34:445–457. doi:10.1016/S0038-0717(01)00198-5

    Article  Google Scholar 

  • Dubach M, Russelle MP (1994) Forage legume roots and nodules and their role in nitrogen transfer. Agron J 86:259–266

    Article  Google Scholar 

  • Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht, 5th edn. Ulmer, Stuttgart

  • Gelman A, Meng XL, Stern H (1996) Posterior predictive assessment of model fitness via realized discrepancies. Stat Sin 6:733–807

    Google Scholar 

  • Gelman A, Carlin JB, Stern HS, Rubin DB (2003) Bayesian data analysis, 2nd edn. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  • Gu C, Riley WJ (2010) Combined effects of short term rainfall patterns and soil texture on soil nitrogen cycling—a modeling analysis. J Contam Hydrol 112:141–154. doi:10.1016/j.jconhyd.2009.12.003

    Article  Google Scholar 

  • Hooper DU, Vitousek PM (1998) Effects of plant composition and diversity on nutrient cycling. Ecol Monogr 68(1):121–149. doi:10.2307/2657146

    Article  Google Scholar 

  • Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75(1):3–35. doi:10.1890/04-0922

    Article  Google Scholar 

  • Janssen PHM, Heuberger PSC (1995) Calibration of process-oriented models. Ecol Model 83:55–66. doi:10.1016/0304-3800(95)00084-9

    Article  Google Scholar 

  • Jonard M, Legout A, Nicolas M, Dambrine E, Nys C, Ulrich E, van der Perre R, Ponette Q (2012) Deterioration of Norway spruce vitality despite a sharp decline in acid deposition: a long-term integrated perspective. Glob Change Biol 18:711–725. doi:10.1111/j.1365-2486.2011.02550.x

    Article  Google Scholar 

  • Kéry M (2010) Introduction to WinBUGS for ecologists: a Bayesian approach to regression, ANOVA, mixed models and related analyses, 1st edn. Academic Press, Burlington

    Google Scholar 

  • Kluge G, Müller-Westermeier G (2000) Das Klima ausgewählter Orte der Bundesrepublik Deutschland: Jena, Berichte des Deutschen Wetterdienstes, vol 213. Deutscher Wetterdienst, Offenbach am Main, Germany

  • Kreutziger Y (2006) Rückkopplungseffekte verschieden diverser Grünlandökosysteme auf die Komponenten des Bodenwasserhaushalts an einem Auestandort der Saale. Dissertation, Friedrich Schiller University Jena, Jena

  • Kristensen HL, Gundersen P, Callesen I, Reinds GJ (2004) Throughfall nitrogen deposition has different impacts on soil solution nitrate concentration in European coniferous and deciduous forests. Ecosystems 7:180–192. doi:10.1007/s10021-003-0216-y

    Article  Google Scholar 

  • Li C, Farahbakhshazad N, Jaynes DB, Dinnes DL, Salas W, McLaughlin D (2006) Modeling nitrate leaching with a biogeochemical model modified based on observations in a row-crop field in Iowa. Ecol Model 196:116–130. doi:10.1016/j.ecolmodel.2006.02.007

    Article  Google Scholar 

  • Li Y, White R, Chen D, Zhang J, Li B, Zhang Y, Huang Y, Edis R (2007) A spatially referenced water and nitrogen management model (WNMM) for (irrigated) intensive cropping systems in the North China Plain. Ecol Model 203:395–423. doi:10.1016/j.ecolmodel.2006.12.011

    Article  Google Scholar 

  • Loreau M (1998) Biodiversity and ecosystem functioning: a mechanistic model. Proc Natl Acad Sci USA 95:5632–5636. doi:10.1073/pnas.95.10.5632

    Article  Google Scholar 

  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808. doi:10.1126/science.1064088

    Article  Google Scholar 

  • Lunn D, Spiegelhalter D, Thomas A, Best N (2009) The BUGS project: evolution, critique and future directions. Stat Med 28:3049–3067. doi:10.1002/sim.3680

    Article  Google Scholar 

  • Majumdar A, Kaye J, Gries C, Hope D, Grimm N (2008) Hierarchical spatial modeling and prediction of multiple soil nutrients and carbon concentrations. Commun Stat Simul Comput 37:434–453. doi:10.1080/03610910701792588

    Article  Google Scholar 

  • Marquard E, Weigelt A, Temperton VM, Roscher C, Schumacher J, Buchmann N, Fischer M, Weisser WW, Schmid B (2009) Plant species richness and functional composition drive overyielding in a six-year grassland experiment. Ecology 90:3290–3302. doi:10.1890/09-0069.1

    Article  Google Scholar 

  • Meng XL (1994) Posterior predictive p-values. Ann Stat 22:1142–1160. doi:10.1214/aos/1176325622

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part 1—a discussion of principles. J Hydrol 10:282–290. doi:10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  • Niklaus PA, Kandeler E, Leadley PW, Schmid B, Tscherko D, Körner C (2001) A link between plant diversity, elevated CO2 and soil nitrate. Oecologia 127:540–548. doi:10.1007/s004420000612

    Article  Google Scholar 

  • Ntzoufras I (2009) Bayesian modeling using WinBUGS. Wiley, Hoboken

    Book  Google Scholar 

  • Oelmann Y, Kreutziger Y, Bol R, Wilcke W (2007a) Nitrate leaching in soil: tracing the NO3 sources with the help of stable N and O isotopes. Soil Biol Biochem 39:3024–3033. doi:10.1016/j.soilbio.2007.05.036

    Article  Google Scholar 

  • Oelmann Y, Kreutziger Y, Temperton VM, Buchmann N, Roscher C, Schumacher J, Schulze ED, Weisser WW, Wilcke W (2007b) Nitrogen and phosphorus budgets in experimental grasslands of variable diversity. J Environ Qual 36:396–407. doi:10.2134/jeq2006.0217

    Article  Google Scholar 

  • Oelmann Y, Wilcke W, Temperton VM, Buchmann N, Roscher C, Schumacher J, Schulze ED, Weisser WW (2007c) Soil and plant nitrogen pools as related to plant diversity in an experimental grassland. Soil Sci Soc Am J 71:720–729. doi:10.2136/sssaj2006.0205

    Article  Google Scholar 

  • Oleson JJ, Hope D, Gries C, Kaye J (2006) Estimating soil properties in heterogeneous land-use patches: a Bayesian approach. Environmetrics 17:517–525. doi:10.1002/env.789

    Article  Google Scholar 

  • Pedersen A, Petersen B, Eriksen J, Hansen S, Jensen L (2007) A model simulation analysis of soil nitrate concentrations—does soil organic matter pool structure or catch crop growth parameters matter most? Ecol Model 205:209–220. doi:10.1016/j.ecolmodel.2007.02.016

    Article  Google Scholar 

  • Proulx R, Wirth C, Voigt W, Weigelt A, Roscher C, Attinger S, Baade J, Barnard RL, Buchmann N, Buscot F, Eisenhauer N, Fischer M, Gleixner G, Halle S, Hildebrandt A, Kowalski E, Kuu A, Lange M, Milcu A, Niklaus PA, Oelmann Y, Rosenkranz S, Sabais A, Scherber C, Scherer-Lorenzen M, Scheu S, Schulze ED, Schumacher J, Schwichtenberg G, Soussana JF, Temperton VM, Weisser WW, Wilcke W, Schmid B (2010) Diversity promotes temporal stability across levels of ecosystem organization in experimental grasslands. PLOS ONE 5:e13382. doi:10.1371/journal.pone.0013382

    Article  Google Scholar 

  • R Development Core Team (2006) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, url: http://www.R-project.org

  • Riley WJ, Matson PA (2000) NLOSS: a mechanistic model of denitrified N2O and N2 evolution from soil. Soil Sci 165:237–249. doi:10.1097/00010694-200003000-00006

    Article  Google Scholar 

  • Roscher C, Schumacher J, Baade J, Wilcke W, Gleixner G, Weisser WW (2004) The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community. Basic Appl Ecol 5:107–121. doi:10.1078/1439-1791-00216

    Article  Google Scholar 

  • Rosenkranz S, Wilcke W, Eisenhauer N, Oelmann Y (2012) Net ammonification as influenced by plant diversity in experimental grassland. Soil Biol Biochem 48:78–87. doi:10.1016/j.soilbio.2012.01.008

    Article  Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774. doi:10.1126/science.287.5459.1770

    Article  Google Scholar 

  • Scherer-Lorenzen M, Palmborg C, Prinz A, Schulze ED (2003) The role of plant diversity and composition for nitrate leaching in grasslands. Ecology 84(6):1539–1552. doi:10.1890/0012-9658(2003)084[1539:TROPDA]2.0.CO;2

    Google Scholar 

  • Schilling KE, Spooner J (2006) Effects of watershed-scale land use change on stream nitrate concentrations. J Environ Qual 35:2132–2145. doi:10.2134/jeq2006.0157

    Article  Google Scholar 

  • Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85(3):591–602. doi:10.1890/03-8002

    Article  Google Scholar 

  • Spehn EM, Joshi J, Schmid B, Diemer M, Korner C (2000) Above-ground resource use increases with plant species richness in experimental grassland ecosystems. Funct Ecol 14(3):326–337

    Article  Google Scholar 

  • Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian measures of model complexity and fit. J R Stat Soc B Stat Methodol 64:583–639. doi:10.1111/1467-9868.00353

    Article  Google Scholar 

  • Steinbeiss S, Beßler H, Engels C, Temperton VM, Buchmann N, Roscher C, Kreutziger Y, Baade J, Habekost M, Gleixner G (2008) Plant diversity positively affects short-term soil carbon storage in experimental grasslands. Glob Change Biol 14:2937–2949. doi:10.1111/j.1365-2486.2008.01697.x

    Article  Google Scholar 

  • Stevenson FJ, Cole MA (1999) Cycles of soil: carbon, nitrogen, phosphorus, sulfur, micronutrients, 2nd edn. Wiley, New York

    Google Scholar 

  • Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379:718–720. doi:10.1038/379718a0

    Article  Google Scholar 

  • Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277(5330):1300–1302. doi:10.1126/science.277.5330.1300

    Article  Google Scholar 

  • van der Laan M, Stirzaker RJ, Annandale JG, Bristow KL, du Preez CC (2010) Monitoring and modelling draining and resident soil water nitrate concentrations to estimate leaching losses. Agric Water Manag 97:1779–1786. doi:10.1016/j.agwat.2010.06.012

    Article  Google Scholar 

  • van Schöll L, van Dam AM, Leffelaar P (1997) Mineralisation of nitrogen from an incorporated catch crop at low temperatures: experiment and simulation. Plant Soil 188:211–219. doi:10.1023/A:1004255102840

    Article  Google Scholar 

  • Weigelt A, Marquard E, Temperton VM, Roscher C, Scherber C, Mwangi PN, von Felten S, Buchmann N, Schmid B, Schulze ED, Weisser WW (2010) The Jena Experiment: six years of data from a grassland biodiversity experiment. Ecol Freshw Fish 91:929

    Article  Google Scholar 

Download references

Acknowledgements

We thank the many people who helped with the management of the experiment and in particular the initiators, E.-D. Schulze, B. Schmid, and W. W. Weisser, as well as the scientific coordinators C. Roscher, A. Weigelt, and A. Ebeling. Thanks also to all the helpers who assisted during the weeding campaigns. We also thank Y. Kreutziger for providing soil data. The Jena Experiment is funded by the Deutsche Forschungsgemeinschaft (DFG, FOR 456 & 1451, Wi 1601/4) and the Swiss National Science Foundation (SNSF, 200021E-131195/1), with additional support from the Friedrich Schiller University Jena and the Max Planck Society. We thank the two reviewers for their valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Wilcke.

Additional information

Responsible Editor: Kathleen Lohse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leimer, S., Wirth, C., Oelmann, Y. et al. Biodiversity effects on nitrate concentrations in soil solution: a Bayesian model. Biogeochemistry 118, 141–157 (2014). https://doi.org/10.1007/s10533-013-9913-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-013-9913-6

Keywords

Navigation