, Volume 118, Issue 1–3, pp 135–139 | Cite as

Are chemical oxidation methods relevant to isolate a soil pool of centennial carbon?



Despite its relevance to long term carbon sequestration in soils, there is to date no successful experimental way to isolate all the stable pool of soil organic carbon (SOC), i.e. SOC that has a residence time of centuries to millennia. Long term bare fallows (LTBF) offer a unique opportunity to study stable SOC, as without carbon inputs and with continuing biodegradation and mineralization, SOC becomes progressively enriched in its most stable components. Here, we took advantage of the 42 plots LTBF experiment of Versailles (France), where C inputs stopped 80 years ago, to test the relevance of chemical oxidation methods to isolate a pool of carbon stable at the centennial timescale. To do so, we studied the effect of two oxidizing reagents -hydrogen peroxide, H2O2, and sodium hypochlorite, NaOCl on soil total organic carbon (TOC) content after 0 and 79 years of LTBF. If these methods can isolate centennial stable C, then chemical oxidation resistant-C from 0 and 79 years of LTBF should equate, in amount, with TOC after 79 years of LTBF. Results showed that chemical oxidation strongly decreased TOC in both soils. Oxidation-resistant OC accounted for ca.1 mgC g−1 soil, which is five times smaller than TOC in the untreated LTBF79 soils, after 79 years of biological oxidation. Moreover, the amount of oxidation-resistant OC was significantly lower in LTBF79 compared to LTBF0. We conclude that neither centennial stable carbon nor older stable carbon can be successfully quantified by these chemical oxidation methods.


Soil organic matter Bare fallow Stable carbon Stabilization Chemical oxidation 



Institut national de la recherche agronomique


Long term bare fallow


Standard deviation


Soil organic carbon


Total organic carbon



The authors thank F. van Oort for access to the 42 plots long term experiment, J.P. Pétraud for help with the sampling and Daniel Billiou for the elemental analysis. Support from the EC2CO INSU program is acknowledged.


  1. Balesdent J (1996) Fractionnements des matières organiques: apport l’étude de la dynamique du carbone de sols cultivés et à sa modélisation. Eur J Soil Sci 47:485–493CrossRefGoogle Scholar
  2. Balesdent J, Wagner GH, Mariotti A (1988) Soil organic matter turnover in long term field experiments as revealed by carbon-13 natural abundance. Soil Sci Soc Am J 52:118–124CrossRefGoogle Scholar
  3. Balesdent J, Petraud JP, Feller C (1991) Some effects of ultrasonic vibrations on size-distribution of soil organic matter. Science du Sol 29:95–106Google Scholar
  4. Balesdent J, Besnard E, Arrouays D, Chenu C (1998) The dynamics of carbon in particle-size fractions of soil in a forest-cultivation sequence. Plant Soil 201:49–57CrossRefGoogle Scholar
  5. Barré P, Eglin T, Christensen BT, Ciais P, Houot S, Kätterer T, van Oort F, Peylin P, Poulton PR, Romanenkov V, Chenu C (2010) Quantifying and isolating stable soil organic carbon using long-term bare fallow experiments. Biogeosciences 7:3839–3850CrossRefGoogle Scholar
  6. Bruun S, Christensen BT, Hansen EM, Magid J, Jensen LS (2003) Calibration and validation of the soil organic matter dynamics of the Daisy model with data from the Askov long-term experiments. Soil Biol Biochem 35:67–76CrossRefGoogle Scholar
  7. Bruun S, Thomsen IK, Christensen BT, Jensen LS (2008) In search of stable soil organic carbon fractions: a comparison of methods applied to soils labelled with 14C for 40 days or 40 years. Eur J Soil Sci 59:247–256CrossRefGoogle Scholar
  8. Burgevin H, Hénin S (1939) Dix années d’expériences sur l’action des engrais sur la composition et les propriétés d’un sol de limon. Ann Agron 6:771–799Google Scholar
  9. Coleman K, Jenkinson DS (1996) RothC-26.3. A model for the turnover of carbon in soil. In: Powlson DS, Smith P, Smith JU (eds) Evaluation of soil organic matter models using existing, long-term datasets. NATO ASI series I. Springer, Berlin, pp 237–246Google Scholar
  10. Eusterhues K, Rumpel C, Kögel-Knabner I (2005) Stabilization of soil organic matter isolated via oxidative degradation. Org Geochem 36:1567–1575CrossRefGoogle Scholar
  11. Falloon P, Smith P (2000) Modelling refractory soil organic matter. Biol Fertil Soils 30:388–398CrossRefGoogle Scholar
  12. Grasset L, Martinod J, Plante AF, Amblès A, Chenu C, Righi D (2009) Nature and origin of lipids in clay size fraction of a cultivated soil as revealed using preparative thermochemolysis. Org Geochem 40:70–78CrossRefGoogle Scholar
  13. Helfrich M, Flessa H, Mikutta R, Dreves A, Ludwig B (2007) Comparison of chemical fractionation methods for isolating stable soil organic carbon pools. Eur J Soil Sci 58:1316–1329CrossRefGoogle Scholar
  14. Jagadamma S, Lal R (2010) Integrating physical and chemical methods for isolating stable soil organic carbon. Geoderma 158:322–330CrossRefGoogle Scholar
  15. Jagadamma S, Lal R, Ussiri DAN, Trumbore SE, Mestelan S (2010) Evaluation of structural chemistry and isotopic signatures of refractory soil organic carbon fraction isolated by wet oxidation methods. Biogeochemistry 98:29–44CrossRefGoogle Scholar
  16. Jenkinson DS, Coleman K (2008) The turnover of organic carbon in subsoils. Part 2. Modelling carbon turnover. Eur J Soil Sci 59:400–413CrossRefGoogle Scholar
  17. Kelly RH, Parton WJ, Crocker GJ, Grace PR, Klir J, Korschens M, Poulton PR, Richter DD (1997) Simulating trends in soil organic carbon in long-term experiments using the Century model. Geoderma 81:75–90CrossRefGoogle Scholar
  18. Kleber M, Mikutta R, Torn MS, Jahn R (2005) Poorly crystalline mineral phases protect organic matter in acid subsoil horizons. Eur J Soil Sci 56:717–725Google Scholar
  19. Mikutta R, Kaiser K (2011) Organic matter bound to mineral surfaces: resistance to chemical and biological oxidation. Soil Biol Biochem 43:1738–1741CrossRefGoogle Scholar
  20. Mikutta R, Kleber M, Jahn R (2005) Poorly crystalline minerals protect organic carbon in clay subfractions from acid subsoil horizons. Geoderma 128:106–115CrossRefGoogle Scholar
  21. Paradelo R, van Oort F, Chenu C (2013) Water-dispersible clay in bare fallow soils after 80 years of continuous fertilizer addition. Geoderma 200–201:40–44CrossRefGoogle Scholar
  22. Parton WJ, Stewart JWB, Cole CV (1988) Dynamics of C, N, P and S in grassland soils: a model. Biogeochemistry 5:109–131CrossRefGoogle Scholar
  23. Pernes-Debuyser A, Tessier D (2002) Influence du pH sur les propriétés des sols : l’essai de longue durée des 42 parcelles à Versailles. Rev Sci Eau 15:27–39Google Scholar
  24. Plante AF, Chenu C, Balabane M, Mariotti A, Righi D (2004) Peroxide oxidation of clay-associated organic matter in a cultivation chronosequence. Eur J Soil Sci 55:471–478CrossRefGoogle Scholar
  25. Righi D, Dinel H, Schulten H-R, Schnitzer M (1995) Characterization of clay–organic-matter complexes resistant to oxidation by peroxide. Eur J Soil Sci 46:423–429CrossRefGoogle Scholar
  26. Rühlmann J (1999) A new approach to estimating the pool of stable organic matter in soil using data from long-term field experiments. Plant Soil 213:149–160CrossRefGoogle Scholar
  27. Siregar A, Kleber M, Mikutta R, Jahn R (2005) Sodium hypochlorite oxidation reduces soil organic matter concentrations without affecting inorganic soil constituents. Eur J Soil Sci 56:481–490CrossRefGoogle Scholar
  28. Theng BKG, Tate KR, Becker-Heidmann P (1992) Towards establishing the age, location, and identity of the inert soil organic matter of a spodosol. Zeitschrift für Pflanzenernährung und Bodenkunde 155:181–184CrossRefGoogle Scholar
  29. Trumbore SE (1997) Potential responses of soil organic carbon to global environmental change. Proc Natl Acad Sci USA 94:8284–8291CrossRefGoogle Scholar
  30. Von Lützow M, Kögel-Knabner I, Ekschmitt K, Flessa H, Guggenberger G, Matzner E, Marschner B (2007) SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biol Biochem 39:2183–2207CrossRefGoogle Scholar
  31. Zimmermann M, Leifeld J, Abiven S, Schmidt MWI, Fuhrer J (2007) Sodium hypochlorite separates an older soil organic matter fraction than acid hydrolysis. Geoderma 139:171–179CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.AgroParisTech, Bioemco (UMR 7618, UPMC, CNRS, UPEC, IRD, ENS, AgroParisTech, INRA)Thiverval GrignonFrance
  2. 2.CNRS, Laboratoire de Géologie (UMR 8538, ENS, CNRS)ParisFrance

Personalised recommendations