, Volume 116, Issue 1–3, pp 215–229 | Cite as

Influence of canopy budget model approaches on atmospheric deposition estimates to forests

  • Sandy Adriaenssens
  • Jeroen Staelens
  • Lander Baeten
  • Arne Verstraeten
  • Pascal Boeckx
  • Roeland Samson
  • Kris Verheyen


Accurate quantification of total nitrogen and acidifying deposition is a major source of uncertainty in determining the exceedance of critical loads in forest ecosystems. Monitoring of atmospheric deposition is frequently based on throughfall measurements in combination with the canopy budget model to calculate ion-exchange fluxes between the forest canopy and incident rainfall water. Various approaches for each step in the canopy budget model have been reported and compared, but combinations of different approaches were not yet assessed. Therefore, the present study quantified the range of estimated dry deposition and total deposition resulting from all possible combinations of canopy budget model approaches for three typical case studies: (i) total nitrogen and potentially acidifying deposition onto a forest canopy, (ii) the ratio of these deposition variables between adjacent coniferous and deciduous stands and (iii) the parameters of a deposition time trend analysis. The time step, type of precipitation data and tracer ion used in the model had a significant effect on the findings in the three case studies. In addition, including or excluding canopy leaching of weak acids and canopy uptake of nitrogen during the leafless season largely affected the results, while including or excluding canopy uptake of nitrate generally showed no effect. In general, the use of wet-only precipitation data can be recommended, along with sodium as a tracer ion and the inclusion of weak acids. We conclude that further research should focus on the assumptions of inertness of the tracer ion and the equal deposition efficiency of base cations and the tracer ion and on the quantification of weak acids in rainfall and throughfall water. Since local or tree-species specific effects might influence the results obtained in this study, a similar analysis is recommended for other tree species and regions when using the canopy budget model.


Throughfall Canopy budget model Atmospheric deposition Nitrogen Trend analysis 



We gratefully acknowledge L. Willems, G. De bruyn and K. Ceunen for field and laboratory assistance. The first and second authors are granted by a research project (G.0205.08 N) and a postdoctoral fellowship, respectively, of the Research Foundation - Flanders (FWO). The third author is funded as a postdoctoral fellow of the Special Research Fund of Ghent University (BOF).

Supplementary material

10533_2013_9846_MOESM1_ESM.doc (93 kb)
Supplementary material 1 (DOC 93 kb)


  1. Adriaenssens S (2012) Dry deposition and canopy exchange for temperate tree species under high nitrogen deposition. PhD thesis, Ghent University, Ghent, BelgiumGoogle Scholar
  2. Adriaenssens S, Staelens J, Wuyts K, De Schrijver A, Van Wittenberghe S, Wuytack T, Kardel F, Verheyen K, Samson R, Boeckx P (2011) Foliar nitrogen uptake from wet deposition and the relation with leaf wettability and water storage capacity. Water Air Soil Pollut 219:43–57CrossRefGoogle Scholar
  3. Adriaenssens S, Hansen K, Staelens J, Wuyts K, De Schrijver A, Baeten L, Boeckx P, Samson R, Verheyen K (2012a) Throughfall deposition and canopy exchange processes along a vertical gradient within the canopy of beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.). Sci Total Environ 420:168–182CrossRefGoogle Scholar
  4. Adriaenssens S, Staelens J, Wuyts K, Samson R, Verheyen K, Boeckx P (2012b) Canopy retention of dissolved inorganic nitrogen by foliage and twigs of four temperate tree species. Ecosystems, in press, DOI:  10.1007/s10021-012-9568-5
  5. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46Google Scholar
  6. Clark KL, Nadkarni NM, Gholz HL (2005) Retention of inorganic nitrogen by epiphytic bryophytes in a tropical montane forest. Biotropica 37:328–336CrossRefGoogle Scholar
  7. Clarke N, Zlindra D, Ulrich E, Mosello R, Derome J, Derome K, König N, Lövblad G, Draaijers GPJ, Hansen K, Thimonier A, Waldner P (2010) Sampling and analysis of deposition. Part XIV. In: Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. UNECE ICP Forests Programme Co-ordinating Centre, Hamburg, Germany (
  8. Craenen H, Van Ranst E, Tack FMG, Verloo MG (2000) Calculation and mapping of critical loads of sulfur and nitrogen in Flanders, Belgium. Sci Total Environ 254:55–64CrossRefGoogle Scholar
  9. Dail DB, Hollinger DY, Davidson EA, Fernandez I, Sievering HC, Scott NA et al (2009) Distribution of nitrogen-15 tracers applied to the canopy of a mature spruce-hemlock stand, Howland, Maine, USA. Oecologia 160:589–599CrossRefGoogle Scholar
  10. De Couck N (2011) Veranderingen in de boomlaag in het Aelmoeseneiebos en de impact op strooisel, bodem en kruidlaag. Ghent University, M.Sc. thesisGoogle Scholar
  11. De Schrijver A, Geudens G, Augusto L, Staelens J, Mertens J, Wuyts K, Gielis L, Verheyen K (2007) The effect of forest type on throughfall deposition and seepage flux: a review. Oecologia 153:663–674CrossRefGoogle Scholar
  12. de Vries W, Reinds GJ, van der Salm C, Draaijers G, Bleeker A, Erisman JW (2001) Intensive monitoring of forest ecosystems in Europe. Technical report 2001. Brussels, Geneva: EC-UN/ECEGoogle Scholar
  13. de Vries W, Vel E, Reinds GJ, Deelstra H, Klap JM, Leeters EEJM, Hendriks CMA, Kerkvoorden M, Landmann G, Herkendell J, Haussmann T, Erisman JW (2003a) Intensive monitoring of forest ecosystems in Europe - 1. Objectives, set-up and evaluation strategy. For Ecol Manage 174:77–95CrossRefGoogle Scholar
  14. de Vries W, Vel EM, Reinds GJ, Deelstra H, Klap JM, Leeters EEJM et al (2003b) Intensive monitoring of forest ecosystems in Europe. 1. Objectives, set-up and evaluation strategy. For Ecol Manage 174:77–95CrossRefGoogle Scholar
  15. de Vries W, van der Salm C, Reinds GJ, Erisman JW (2007) Element fluxes through European forest ecosystems and their relationships with stand and site characteristics. Environ Pollut 148:501–513CrossRefGoogle Scholar
  16. Draaijers G, Erisman JW (1995) A canopy budget model to assess atmospheric deposition from throughfall measurements. Water Air Soil Pollut 85:2253–2258CrossRefGoogle Scholar
  17. Draaijers GPJ, Erisman JW, VanLeeuwen NFM, Romer FG, teWinkel BH, Veltkamp AC, Vermeulen AT, Wyers GP (1997) The impact of canopy exchange on differences observed between atmospheric deposition and throughfall fluxes. Atmos Environ 31:387–397CrossRefGoogle Scholar
  18. Emmett BA, Boxman D, Bredemeier M, Gundersen P, Kjonaas OJ, Moldan F, Schleppi P, Tietema A, Wright RF (1998) Predicting the effects of atmospheric nitrogen deposition in conifer stands: evidence from the NITREX ecosystem-scale experiments. Ecosystems 1:352–360CrossRefGoogle Scholar
  19. Erisman JW, Beier C, Draaijers G, Lindberg S (1994) Review of deposition monitoring methods. Tellus Series B-Chem Phys Meteorol 46:79–93CrossRefGoogle Scholar
  20. Ferm M, Hultberg H (1999) Dry deposition and internal circulation of nitrogen, sulphur and base cations to a coniferous forest. Atmos Environ 33:4421–4430CrossRefGoogle Scholar
  21. Fowler D, Pilegaard K, Sutton MA, Ambus P, Raivonen M, Duyzer J et al (2009) Atmospheric composition change: ecosystems-atmosphere interactions. Atmos Environ 43:5193–5267CrossRefGoogle Scholar
  22. Friedland AJ, Miller EK, Battles JJ, Thorne JF (1991) Nitrogen deposition, distribution and cycling in a subalpine spruce-fir forest in the Adirondecks, New York, USA. Biogeochemistry 14:31–55CrossRefGoogle Scholar
  23. Fritz O, Niklasson M, Churski M (2008) Tree age is a key factor for the conservation of epiphytic lichens and bryophytes in beech forests. App Veg Sci 12:93–106CrossRefGoogle Scholar
  24. Garland JA (2001) On the size dependence of particle deposition. Water Air Soil Pollut Focus 1:323–332CrossRefGoogle Scholar
  25. Gomez-Guerrero A, Chavez-Aguilar G, Fenn ME, Vargas-Hernandez J, Horwath WR (2008) Foliar nitrogen uptake in simulated wet deposition in Abies religiosa. Interciencia 33:429–434Google Scholar
  26. Graf Pannatier E, Thimonier A, Schmitt M, Walthert L, Waldner P (2011) A decade of monitoring at Swiss Long-Term Forest Ecosystem Research (LWF) sites: can we observe trends in atmospheric acid deposition and in soil solution acidity? Environ Monitor Asses 174:3–30CrossRefGoogle Scholar
  27. Harrison AF, Schulze E-D, Gebauer G, Bruckner G (2000) Canopy uptake and utilization of atmospheric pollutant nitrogen. Pages 171-188 in Schulze E-D, ed. Carbon and Nitrogen Cycling in European Forest Ecosystems, vol. 142 Ecological StudiesGoogle Scholar
  28. Horvath L(2004) Determination of the nitrogen compound balance between the atmosphere and a Norway spruce forest ecosystem. Nutrient Cycling in Agroecosystems 70: 143-146Google Scholar
  29. Houle D, Ouimet R, Paquin R, Laflamme J (1999) Interactions of atmospheric deposition with a mixed hardwood and a coniferous forest canopy at the Lake Clair Watershed (Duchesnay, Quebec). Can J For Res 29:1944–1957CrossRefGoogle Scholar
  30. Ignatova N, Dambrine E (2000) Canopy uptake of N deposition in spruce (Picea abies L Karst) stands. Ann For Sci 57:113–120CrossRefGoogle Scholar
  31. Johansson O, Nordin A, Olofsson J, Palmqvist K (2010) Responses of epiphytic lichens to an experimental whole-tree nitrogen-deposition gradient. New Phytol 188:1075–1084CrossRefGoogle Scholar
  32. Kendall M (1975) Multivariate analysis. Charles Griffin & Company, LondonGoogle Scholar
  33. Lang GE, Reiners WA, Heier RK (1976) Potential alteration of precipitation chemistry by epiphytic lichens. Oecologia 25:229–241CrossRefGoogle Scholar
  34. Lindberg SE, Lovett GM, Richter DD, Johnson DW (1986) Atmospheric deposition and canopy interactions of major ions in a forest. Science 231:141–145CrossRefGoogle Scholar
  35. Lovett GM, Nolan SS, Driscoll CT, Fahey TJ (1996) Factors regulating throughfall flux in a New Hampshire forested landscape. Can J For Res 26:2134–2144CrossRefGoogle Scholar
  36. Neary AJ, Gizyn WI (1994) Throughfall and stemflow chemistry under deciduous and coniferous forest canopies in south-central Ontario. Can J For Res 24:1089–1100CrossRefGoogle Scholar
  37. Neirynck J, Janssens IA, Roskams P, Quataert P, Verschelde P, Ceulemans R (2008) Nitrogen biogeochemistry of a mature Scots pine forest subject to high nitrogen loads. Biogeochemistry 91:201–222CrossRefGoogle Scholar
  38. Parker GG (1983) Throughfall and stemflow in the forest nutrient cycle. Adv Ecol Res 13:57–133CrossRefGoogle Scholar
  39. Ranius T, Johansson P, Berg N, Niklasson M (2008) The influence of tree age and microhabitat quality on the occurrence of crustose lichens associated with old oaks. J Veg Sci 19:653–662CrossRefGoogle Scholar
  40. Reiners WA, Olson RK (1984) Effects of canopy components on throughfall chemistry - an experimental-analysis. Oecologia 63:320–330CrossRefGoogle Scholar
  41. Rothe A, Huber C, Kreutzer K, Weis W (2002) Deposition and soil leaching in stands of Norway spruce and European Beech: results from the Höglwald research in comparison with other European case studies. Plant Soil 240:33–45CrossRefGoogle Scholar
  42. Ruijgrok W, Davidson CI, Nicholson KW (1995) Dry deposition of particles. Implications and recommendations for mapping of deposition over Europe. Tellus 47B:587–601Google Scholar
  43. Ruijgrok W, Tieben H, Eisinga P (1997) The dry deposition of particles to a forest canopy: a comparison of model and experimental results. Atmos Environ 31:399–415CrossRefGoogle Scholar
  44. Sievering H, Tomaszewski T, Torizzo J (2007) Canopy uptake of atmospheric N deposition at a conifer forest: part I - Canopy N budget, photosynthetic efficiency and net ecosystem exchange. Tellus B59:483–492Google Scholar
  45. Slinn WGN (1982) Predictions for particle deposition to vegetative canopies. Atmos Environ 16:1785–1794CrossRefGoogle Scholar
  46. Staelens J, De Schrijver A, Van Avermaet P, Genouw G, Verhoest N (2005) A comparison of bulk and wet-only deposition at two adjacent sites in Melle (Belgium). Atmos Environ 39:7–15CrossRefGoogle Scholar
  47. Staelens J, De Schrijver A, Verheyen K (2007) Seasonal variation in throughfall and stemflow chemistry beneath a European beech (Fagus sylvatica) tree in relation to canopy phenology. Can J For Res 37:1359–1372CrossRefGoogle Scholar
  48. Staelens J, Houle D, De Schrijver A, Neirynck J, Verheyen K (2008) Calculating dry deposition and canopy exchange with the canopy budget model: review of assumptions and application to two deciduous forests. Water Air Soil Pollut 191:149–169CrossRefGoogle Scholar
  49. Staelens J, Neirynck J, Genouw G, Roskams P (2009) Dynamic modelling of target loads of acidifying deposition for forest ecosystems in Flanders (Belgium). Iforest-Biogeosci For 2:30–33CrossRefGoogle Scholar
  50. R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (
  51. UBA (2004) Mapping manual 2004. Manual on methodologies and criteria for modelling and mapping critical loads & levels and air pollution effects, risks and trends. Source:
  52. Ukonmaanaho L, Starr M (2002) Major nutrients and acidity: budgets and trends at four remote boreal stands in Finland during the 1990s. Sci Total Environ 297:21–41CrossRefGoogle Scholar
  53. Vanguelova EI, Benham S, Pitman R, Moffat AJ, Broadmeadow M, Nisbet T, Durrant D, Barsoum N, Wilkinson M, Bochereau F, Hutchings T, Broadmeadow S, Crow P, Taylor P, Houston TD (2010) Chemical fluxes in time through forest ecosystems in the UK - Soil response to pollution recovery. Environ Pollut 158:1857–1869CrossRefGoogle Scholar
  54. Wanek W, Hinko-Najera Umana N (2010) Large canopy exchange fluxes of inorganic and organic nitrogen and preferential retention of nitrogen by epiphytes in a tropical lowland rainforest. Ecosystems 13:367–381CrossRefGoogle Scholar
  55. Wilson EJ, Tiley C (1998) Foliar uptake of wet-deposited nitrogen by Norway spruce: an experiment using N-15. Atmos Environ 32:513–518CrossRefGoogle Scholar
  56. Zhang G, Zeng GM, Jiang YM, Du CY, Huang GH, Zeng M, Su XK, Xiang RJ (2006) Exchange of proton and major elements in two-layer canopies under acid rain in a subtropical evergreen forest in central-south China. J Integ Plant Biol 48:1154–1162CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Sandy Adriaenssens
    • 1
    • 6
  • Jeroen Staelens
    • 1
    • 2
    • 7
  • Lander Baeten
    • 1
    • 3
  • Arne Verstraeten
    • 4
  • Pascal Boeckx
    • 2
  • Roeland Samson
    • 5
  • Kris Verheyen
    • 1
  1. 1.Forest and Nature LaboratoryGhent UniversityGontrode (Melle)Belgium
  2. 2.Isotope Bioscience Laboratory – ISOFYSGhent UniversityGhentBelgium
  3. 3.Terrestrial Ecology Unit, Department of BiologyGhent UniversityGhentBelgium
  4. 4.Research Institute for Nature and ForestBrusselsBelgium
  5. 5.Department of Bioscience EngineeringUniversity of AntwerpAntwerpenBelgium
  6. 6.Belgian Interregional Environment AgencyBrusselsBelgium
  7. 7.Flemish Environment AgencyAntwerpBelgium

Personalised recommendations