, Volume 117, Issue 1, pp 39–54 | Cite as

No temperature acclimation of soil extracellular enzymes to experimental warming in an alpine grassland ecosystem on the Tibetan Plateau

  • Xin Jing
  • Yonghui Wang
  • Haegeun Chung
  • Zhaorong Mi
  • Shiping Wang
  • Hui Zeng
  • Jin-Sheng He


Alpine grassland soils store large amounts of soil organic carbon (SOC) and are susceptible to rising air temperature. Soil extracellular enzymes catalyze the rate-limiting step in SOC decomposition and their catalysis, production and degradation rates are regulated by temperature. Therefore, the responses of these enzymes to warming could have a profound impact on carbon cycling in the alpine grassland ecosystems. This study was conducted to measure the responses of soil extracellular enzyme activity and temperature sensitivity (Q10) to experimental warming in samples from an alpine grassland ecosystem on the Tibetan Plateau. A free air-temperature enhancement system was set up in May 2006. We measured soil microbial biomass, nutrient availability and the activity of five extracellular enzymes in 2009 and 2010. The Q10 of each enzyme was calculated using a simple first-order exponential equation. We found that warming had no significant effects on soil microbial biomass C, the labile C or N content, or nutrient availability. Significant differences in the activity of most extracellular enzymes among sampling dates were found, with typically higher enzyme activity during the warm period of the year. The effects of warming on the activity of the five extracellular enzymes at 20 °C were not significant. Enzyme activity in vitro strongly increased with temperature up to 27 °C or over 30 °C (optimum temperature; Topt). Seasonal variations in the Q10 were found, but the effects of warming on Q10 were not significant. We conclude that soil extracellular enzymes adapted to seasonal temperature variations, but did not acclimate to the field experimental warming.


Global warming Temperature acclimation Soil extracellular enzyme activity Q10 Alpine grassland Tibetan plateau 



We thank Donovan German, Steven Allison, Matthew Wallenstein, Meg Steinweg and Shawna McMahon for help with lab protocols and advice, Lei Liu for access of microplate reader, Wenjing Chang and Zhengxia Chen for assistance in soil microbial biomass analysis, Xuemei Zhao and Jianjing Ma for assistance with enzyme assays, and Nan Cong and Samraat Pawar for statistical analysis. The authors are grateful to Biao Zhu, Chao Song, Yan Geng, Yue Shi, Iain Bruce and three anonymous referees for valuable and constructive comments that substantially improved this manuscript. This study was supported by the National Program on Key Basic Research Project (Grant No. 2010CB950602), the National Natural Science Foundation of China (Grants No. 31025005 and 31021001), and the Program of “One Hundred Talented People” of the Chinese Academy of Sciences (Grant No. KSCX2-YW-Z-0806). HC is supported by the Research Fellowship for International Young Scientists of Chinese Academy of Sciences. SW is partially supported by the National Natural Science Foundation of China (Grant No. 41230750) and the National Basic Research Program (2010CB833502). We thank USDA Grant to SSI (2010) at Colorado State University that allowed XJ to learn enzyme assays.

Supplementary material

10533_2013_9844_MOESM1_ESM.docx (77 kb)
Supplementary material 1 (DOCX 76 kb)


  1. Allison SD, Treseder KK (2008) Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Glob Change Biol 14(12):2898–2909. doi: 10.1111/j.1365-2486.2008.01716.x CrossRefGoogle Scholar
  2. Allison SD, Czimczik CI, Treseder KK (2008) Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest. Glob Change Biol 14(5):1156–1168. doi: 10.1111/j.1365-2486.2008.01549.x CrossRefGoogle Scholar
  3. Allison SD, Wallenstein MD, Bradford MA (2010) Soil-carbon response to warming dependent on microbial physiology. Nat Geosci 3(5):336–340. doi: 10.1038/Ngeo846 CrossRefGoogle Scholar
  4. Allison SD, Weintraub MN, Gartner TB, Waldrop MP (2011) Evolutionary-economic principles as regulators of soil enzyme production and ecosystem function. In: Shukla G, Varma A (eds) Soil Enzymology. Springer, Berlin, pp 229–243Google Scholar
  5. Baldrian P, Šnajdr J, Merhautová V, Dobiášová P, Cajthaml T, Valášková V (2012) Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change. Soil Biol Biochem. doi: 10.1016/j.soilbio.2012.01.020 Google Scholar
  6. Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feedbacks. ISME J 2(8):805–814. doi: 10.1038/ismej.2008.58 CrossRefGoogle Scholar
  7. Bell TH, Henry HAL (2011) Fine scale variability in soil extracellular enzyme activity is insensitive to rain events and temperature in a mesic system. Pedobiologia 54(2):141–146. doi: 10.1016/j.pedobi.2010.12.003 CrossRefGoogle Scholar
  8. Bell TH, Klironomos JN, Henry HAL (2010) Seasonal responses of extracellular enzyme activity and microbial biomass to warming and nitrogen addition. Soil Sci Soc Am J 74(3):820. doi: 10.2136/sssaj2009.0036 CrossRefGoogle Scholar
  9. Björk RG, Björkman MP, Andersson MX, Klemedtsson L (2008) Temporal variation in soil microbial communities in alpine tundra. Soil Biol Biochem 40(1):266–268. doi: 10.1016/j.soilbio.2007.07.017 CrossRefGoogle Scholar
  10. Boerner REJ, Brinkman JA, Smith A (2005) Seasonal variations in enzyme activity and organic carbon in soil of a burned and unburned hardwood forest. Soil Biol Biochem 37(8):1419–1426. doi: 10.1016/j.soilbio.2004.12.012 CrossRefGoogle Scholar
  11. Bradford MA, Davies CA, Frey SD, Maddox TR, Melillo JM, Mohan JE, Reynolds JF, Treseder KK, Wallenstein MD (2008) Thermal adaptation of soil microbial respiration to elevated temperature. Ecol Lett 11(12):1316–1327. doi: 10.1111/j.1461-0248.2008.01251.x CrossRefGoogle Scholar
  12. Bradford MA, Watts BW, Davies CA (2010) Thermal adaptation of heterotrophic soil respiration in laboratory microcosms. Glob Change Biol 16(5):1576–1588. doi: 10.1111/j.1365-2486.2009.02040.x CrossRefGoogle Scholar
  13. Brockett BFT, Prescott CE, Grayston SJ (2012) Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biol Biochem 44(1):9–20. doi: 10.1016/j.soilbio.2011.09.003 CrossRefGoogle Scholar
  14. Bronson DR, Gower ST, Tanner M, Linder S, Van Herk I (2008) Response of soil surface CO2 flux in a boreal forest to ecosystem warming. Glob Change Biol 14(4):856–867. doi: 10.1111/j.1365-2486.2007.01508.x CrossRefGoogle Scholar
  15. Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17(6):837–842CrossRefGoogle Scholar
  16. Brzostek ER, Finzi AC (2012) Seasonal variation in the temperature sensitivity of proteolytic enzyme activity in temperate forest soils. J Geophys Res 117:G01024. doi: 10.1029/2011jg001688 CrossRefGoogle Scholar
  17. Cao G (2010) Ecosystem observation and research data set: grassland and desert ecosystems volume (Qinghai Haibei Station 2001–2006). China Agriculture Press, BeijingGoogle Scholar
  18. Chinese Soil Taxonomy Research Group (1995) Chinese Soil Taxonomy. Science Press, BeijingGoogle Scholar
  19. Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408(6809):184–187. doi: 10.1038/35041539 CrossRefGoogle Scholar
  20. Curiel Yuste J, Baldocchi D, Gershenson A, Goldstein A, Misson L, Wong S (2007) Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture. Glob Change Biol 13(9):2018–2035. doi: 10.1111/j.1365-2486.2007.01415.x CrossRefGoogle Scholar
  21. Cusack DF, Torn MS, McDowell WH, Silver WL (2010) The response of heterotrophic activity and carbon cycling to nitrogen additions and warming in two tropical soils. Glob Change Biol 16:2555–2572. doi: 10.1111/j.1365-2486.2009.02131.x Google Scholar
  22. Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440(7081):165–173. doi: 10.1038/nature04514 CrossRefGoogle Scholar
  23. Davidson EA, Trumbore SE, Amundson R (2000) Soil warming and organic carbon content. Nature 408(6814):789–790. doi: 10.1038/35048672 CrossRefGoogle Scholar
  24. Dong Y, Somero GN (2009) Temperature adaptation of cytosolic malate dehydrogenases of limpets (genus Lottia): differences in stability and function due to minor changes in sequence correlate with biogeographic and vertical distributions. J Exp Biol 212(2):169–177. doi: 10.1242/jeb.024505 CrossRefGoogle Scholar
  25. Eliasson PE, McMurtrie RE, Pepper DA, Stromgren M, Linder S, Agren GI (2005) The response of heterotrophic CO2 flux to soil warming. Glob Change Biol 11(1):167–181. doi: 10.1111/j.1365-2486.2004.00878.x CrossRefGoogle Scholar
  26. Fenner N, Freeman C, Reynolds B (2005) Observations of a seasonally shifting thermal optimum in peatland carbon-cycling processes; implications for the global carbon cycle and soil enzyme methodologies. Soil Biol Biochem 37(10):1814–1821. doi: 10.1016/j.soilbio.2005.02.032 CrossRefGoogle Scholar
  27. Georlette D, Blaise V, Collins T, D’Amico S, Gratia E, Hoyoux A, Marx JC, Sonan G, Feller G, Gerday C (2004) Some like it cold: biocatalysis at low temperatures. FEMS Microbiol Rev 28(1):25–42. doi: 10.1016/j.femsre.2003.07.003 CrossRefGoogle Scholar
  28. German DP, Weintraub MN, Grandy AS, Lauber CL, Rinkes ZL, Allison SD (2011) Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biol Biochem. doi: 10.1016/j.soilbio.2011.03.017 Google Scholar
  29. German DP, Marcelo KRB, Stone MM, Allison SD (2012) The Michaelis–Menten kinetics of soil extracellular enzymes in response to temperature: a cross-latitudinal study. Glob Change Biol 18:1468–1479. doi: 10.1111/j.1365-2486.2011.02615.x CrossRefGoogle Scholar
  30. Giblin A, Laundre J, Nadelhoffer K, Shaver G (1994) Measuring nutrient availability in arctic soils using ion exchange resins: a field test. Soil Sci Soc Am J 58(4):1154–1162CrossRefGoogle Scholar
  31. Guo D, Wang H (2011) The significant climate warming in the northern Tibetan Plateau and its possible causes. Int J Climatol 31:1257–1413. doi: 10.1002/joc.2388 CrossRefGoogle Scholar
  32. Hartley IP, Heinemeyer A, Ineson P (2007) Effects of three years of soil warming and shading on the rate of soil respiration: substrate availability and not thermal acclimation mediates observed response. Glob Change Biol 13(8):1761–1770. doi: 10.1111/j.1365-2486.2007.01373.x CrossRefGoogle Scholar
  33. Hartley IP, Hopkins DW, Garnett MH, Sommerkorn M, Wookey PA (2008) Soil microbial respiration in arctic soil does not acclimate to temperature. Ecol Lett 11(10):1092–1100. doi: 10.1111/j.1461-0248.2008.01223.x CrossRefGoogle Scholar
  34. Henry HAL (2012) Soil extracellular enzyme dynamics in a changing climate. Soil Biol Biochem 47:53–59. doi: 10.1016/j.soilbio.2011.12.026 CrossRefGoogle Scholar
  35. Jintaridth B, Coyne MS, Matocha CJ, Workman S (2009) Vegetation and soil depth affect phenol oxidase activity in a model riparian site. J World Assoc Soil Water Conserv J4:1–15Google Scholar
  36. Johnson FH, Lewin I (1946) The growth rate of E. coli in relation to temperature, quinine and coenzyme. J Cell Physiol 28(1):47–75Google Scholar
  37. Kaiser C, Koranda M, Kitzler B, Fuchslueger L, Schnecker J, Schweiger P, Rasche F, Zechmeister-Boltenstern S, Sessitsch A, Richter A (2010) Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil. New Phytol 187(3):843–858. doi: 10.1111/j.1469-8137.2010.03321.x CrossRefGoogle Scholar
  38. Kang HJ, Freeman C (1999) Phosphatase and arylsulphatase activities in wetland soils: annual variation and controlling factors. Soil Biol Biochem 31(3):449–454CrossRefGoogle Scholar
  39. Khalili B, Nourbakhsh F, Nili N, Khademi H, Sharifnabi B (2011) Diversity of soil cellulase isoenzymes is associated with soil cellulase kinetic and thermodynamic parameters. Soil Biol Biochem 43(8):1639–1648. doi: 10.1016/j.soilbio.2011.03.019 CrossRefGoogle Scholar
  40. Kimball BA, Conley MM, Wang S, Lin X, Luo C, Morgan J, Smith D (2008) Infrared heater arrays for warming ecosystem field plots. Glob Change Biol 14(2):309–320. doi: 10.1111/j.1365-2486.2007.01486.x CrossRefGoogle Scholar
  41. Kirschbaum MUF (1995) The temperature-dependence of soil organic-matter decomposition, and the effect of global warming on soil organic-C storage. Soil Biol Biochem 27(6):753–760CrossRefGoogle Scholar
  42. Knorr W, Prentice IC, House JI, Holland EA (2005) Long-term sensitivity of soil carbon turnover to warming. Nature 433(7023):298–301. doi: 10.1038/nature03226 CrossRefGoogle Scholar
  43. Koch O, Tscherko D, Kandeler E (2007) Temperature sensitivity of microbial respiration, nitrogen mineralization, and potential soil enzyme activities in organic alpine soils. Global Biogeochem Cycles 21(4):4017. doi: 10.1029/2007gb002983 CrossRefGoogle Scholar
  44. Lin X, Zhang Z, Wang S, Hu Y, Xu G, Luo C, Chang X, Duan J, Lin Q, Xu B, Wang Y, Zhao X, Xie Z (2011) Response of ecosystem respiration to warming and grazing during the growing seasons in the alpine meadow on the Tibetan plateau. Agric For Meteorol 151(7):792–802. doi: 10.1016/j.agrformet.2011.01.009 CrossRefGoogle Scholar
  45. Liu X, Chen B (2000) Climatic warming in the Tibetan Plateau during recent decades. Int J Climatol 20(14):1729–1742CrossRefGoogle Scholar
  46. Luo Y (2007) Terrestrial carbon-cycle feedback to climate warming. Annu Rev Ecol Evol Syst 38:683–712. doi: 10.1146/annurev.ecolsys.38.091206.095808 CrossRefGoogle Scholar
  47. Luo Y, Wan S, Hui D, Wallace LL (2001) Acclimatization of soil respiration to warming in a tall grass prairie. Nature 413(6856):622–625. doi: 10.1038/35098065 CrossRefGoogle Scholar
  48. Luo C, Xu G, Wang Y, Wang S, Lin X, Hu Y, Zhang Z, Chang X, Duan J, Su A (2009) Effects of grazing and experimental warming on DOC concentrations in the soil solution on the Qinghai-Tibet plateau. Soil Biol Biochem 41(12):2493–2500. doi: 10.1016/j.soilbio.2009.09.006 CrossRefGoogle Scholar
  49. Luo C, Xu G, Chao Z, Wang S, Lin X, Hu Y, Zhang Z, Duan J, Chang X, Su A (2010) Effect of warming and grazing on litter mass loss and temperature sensitivity of litter and dung mass loss on the Tibetan Plateau. Glob Change Biol 16(5):1606–1617. doi: 10.1111/j.1365-2486.2009.02026.x CrossRefGoogle Scholar
  50. Matinizadeh M, Korori S, Teimouri M, Praznik W (2008) Enzyme activities in undisturbed and disturbed forest soils under oak (Quercus brantii var. persica) as affected by soil depth and seasonal variation. Asian J Plant Sci 7:368–374. doi: 10.3923/ajps.2008.368.374 CrossRefGoogle Scholar
  51. Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, Bowles FP, Catricala C, Magill A, Ahrens T, Morrisseau S (2002) Soil warming and carbon-cycle feedbacks to the climate system. Science 298(5601):2173–2176. doi: 10.1126/science.1074153 CrossRefGoogle Scholar
  52. Michaelis L, Menten ML (1913) Die kinetik der invertin wirkung. Biochem Z 49(333–369):352Google Scholar
  53. Natali SM, Schuur EAG, Rubin RL (2012) Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost. J Ecol 100(2):488–498. doi: 10.1111/j.1365-2745.2011.01925.x CrossRefGoogle Scholar
  54. Niu T, Chen L, Zhou Z (2004) The characteristics of climate change over the Tibetan Plateau in the last 40 years and the detection of climatic jumps. Adv Atmos Sci 21(2):193–203. doi: 10.1007/BF02915705 CrossRefGoogle Scholar
  55. Qiu L, Liu J, Wang Y, Zhang X (2005) Profile distribution of enzyme activity of long-term fertilization soil and its dynamic characteristics. Plant Nutr Fertil Sci 11(6):737–741Google Scholar
  56. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing Vienna Austria, AustriaGoogle Scholar
  57. Rinnan R, Michelsen A, Bååth E (2011) Long-term warming of a subarctic heath decreases soil bacterial community growth but has no effects on its temperature adaptation. Appl Soil Ecol 47(3):217–220. doi: 10.1016/j.apsoil.2010.12.011 CrossRefGoogle Scholar
  58. Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J (2001) GCTE-NEWS. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126(4):543–562. doi: 10.1007/s004420000544 CrossRefGoogle Scholar
  59. Saiya-Cork KR, Sinsabaugh RL, Zak DR (2002) The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol Biochem 34(9):1309–1315. doi: 10.1016/S0038-0717(02)00074-3 CrossRefGoogle Scholar
  60. Sardans J, Peñuelas J, Estiarte M (2007) Seasonal patterns of root-surface phosphatase activities in a Mediterranean shrubland: responses to experimental warming and drought. Biol Fertil Soils 43(6):779–786. doi: 10.1007/s00374-007-0166-1 CrossRefGoogle Scholar
  61. Schimel JP, Weintraub MN (2003) The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol Biochem 35(4):549–563. doi: 10.1016/S0038-0717(03)00015-4 CrossRefGoogle Scholar
  62. Shi Y, Baumann F, Ma Y, Song C, Kühn P, Scholten T, He J (2012) Organic and inorganic carbon in the topsoil of the Mongolian and Tibetan grasslands: pattern, control and implications. Biogeosciences 9:1869–1898. doi: 10.5194/bg-9-2287-2012 CrossRefGoogle Scholar
  63. Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75:403–433. doi: 10.1146/annurev.biochem.75.103004.142723 CrossRefGoogle Scholar
  64. Sinsabaugh RL (2010) Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol Biochem 42(3):391–404. doi: 10.1016/j.soilbio.2009.10.014 CrossRefGoogle Scholar
  65. Sinsabaugh R, Moorhead D (1994) Resource allocation to extracellular enzyme production: a model for nitrogen and phosphorus control of litter decomposition. Soil Biol Biochem 26(10):1305–1311CrossRefGoogle Scholar
  66. Sinsabaugh R, Carreiro M, Repert D (2002) Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss. Biogeochemistry 60(1):1–24. doi: 10.1023/A:1016541114786 CrossRefGoogle Scholar
  67. Steinweg JM, Dukes JS, Wallenstein MD (2012) Modeling the effects of temperature and moisture on soil enzyme activity: linking laboratory assays to continuous field data. Soil Biol Biochem 55:85–92. doi: 10.1016/j.soilbio.2012.06.015 CrossRefGoogle Scholar
  68. Stone MM, Weiss MS, Goodale CL, Adams MB, Fernandez IJ, German DP, Allison SD (2012) Temperature sensitivity of soil enzyme kinetics under N-fertilization in two temperate forests. Glob Change Biol 18:1173–1184. doi: 10.1111/j.1365-2486.2011.02545.x CrossRefGoogle Scholar
  69. Suseela V, Conant RT, Wallenstein MD, Dukes JS (2012) Effects of soil moisture on the temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change experiment. Glob Change Biol 18(1):336–348. doi: 10.1111/j.1365-2486.2011.02516.x CrossRefGoogle Scholar
  70. Sylvia D, Fuhrmann J, Hartel P, Zuberer D (2004) Principles and applications of soil microbiology. Prentice Hall, Upper Saddle RiverGoogle Scholar
  71. Tang Y, Wan S, He J, Zhao X (2009) Foreword to the special issue: looking into the impacts of global warming from the roof of the world. J Plant Ecol 2(4):169–171. doi: 10.1093/jpe/rtp026 CrossRefGoogle Scholar
  72. Tian Y, Xu X, Song M, Zhou C, Gao Q, Ouyang H (2009) Carbon sequestration in two alpine soils on the Tibetan Plateau. J Integr Plant Biol 51(9):900–905. doi: 10.1111/j.1744-7909.2009.00852.x CrossRefGoogle Scholar
  73. Tingey DT, Lee EH, Waschmann R, Johnson MG, Rygiewicz PT (2006) Does soil CO2 efflux acclimatize to elevated temperature and CO2 during long-term treatment of Douglas-fir seedlings? New Phytol 170(1):107–118. doi: 10.1111/j.1469-8137.2006.01646.x CrossRefGoogle Scholar
  74. Trasar-Cepeda C, Gil-Sotres F, Leiros MC (2007) Thermodynamic parameters of enzymes in grassland soils from Galicia, NW Spain. Soil Biol Biochem 39(1):311–319. doi: 10.1016/j.soilbio.2006.08.002 CrossRefGoogle Scholar
  75. Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass-C. Soil Biol Biochem 19(6):703–707CrossRefGoogle Scholar
  76. Waldrop MP, Zak DR, Sinsabaugh RL, Gallo M, Lauber C (2004) Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity. Ecol Appl 14(4):1172–1177. doi: 10.1890/03-5120 CrossRefGoogle Scholar
  77. Wallenstein MD, Weintraub MN (2008) Emerging tools for measuring and modeling the in situ activity of soil extracellular enzymes. Soil Biol Biochem 40(9):2098–2106. doi: 10.1016/j.soilbio.2008.01.024 CrossRefGoogle Scholar
  78. Wallenstein MD, McMahon SK, Schimel JP (2009) Seasonal variation in enzyme activities and temperature sensitivities in Arctic tundra soils. Glob Change Biol 15(7):1631–1639. doi: 10.1111/j.1365-2486.2008.01819.x CrossRefGoogle Scholar
  79. Wallenstein MD, Allison S, Ernakovich J, Steinweg JM, Sinsabaugh R (2011) Controls on the temperature sensitivity of soil enzymes: a key driver of in situ enzyme activity rates. In: Shukla G, Varma A (eds) Soil enzymology, vol 22. Springer, Berlin, pp 245–258CrossRefGoogle Scholar
  80. Wang C, Han G, Jia Y, Feng X, Tian X (2011) Insight into the temperature sensitivity of forest litter decomposition and soil enzymes in subtropical forest in China. J Plant Ecol 5(3):279–286. doi: 10.1093/jpe/rtr013 CrossRefGoogle Scholar
  81. Wang S, Duan J, Xu G, Wang Y, Zhang Z, Rui Y, Luo C, Xu B, Zhu X, Chang X, Cui X, Niu H, Zhao X, Wang W (2012) Effects of warming and grazing on soil N availability, species composition and ANPP in alpine meadow. Ecology. doi: 10.1890/11-1408.1 Google Scholar
  82. Weedon JT, Kowalchuk GA, Aerts R, van Hal J, van Logtestijn R, Taş N, Röling WFM, van Bodegom PM (2012) Summer warming accelerates sub-arctic peatland nitrogen cycling without changing enzyme pools or microbial community structure. Glob Change Biol 18(1):138–150. doi: 10.1111/j.1365-2486.2011.02548.x CrossRefGoogle Scholar
  83. Weintraub MN, Schimel JP (2005) Seasonal protein dynamics in Alaskan arctic tundra soils. Soil Biol Biochem 37(8):1469–1475. doi: 10.1016/j.soilbio.2005.01.005 CrossRefGoogle Scholar
  84. Wittmann C, Kähkönen MA, Ilvesniemi H, Kurola J, Salkinoja-Salonen MS (2004) Areal activities and stratification of hydrolytic enzymes involved in the biochemical cycles of carbon, nitrogen, sulphur and phosphorus in podsolized boreal forest soils. Soil Biol Biochem 36(3):425–433. doi: 10.1016/j.soilbio.2003.10.019 CrossRefGoogle Scholar
  85. Wu J, Joergensen RG, Pommerening B, Chaussod R, Brookes PC (1990) Measurement of soil microbial biomass C by fumigation extraction—an automated procedure. Soil Biol Biochem 22(8):1167–1169CrossRefGoogle Scholar
  86. Yang Y, Fang J, Tang Y, Ji C, Zheng C, He J, Zhu B (2008) Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Glob Change Biol 14(7):1592–1599. doi: 10.1111/j.1365-2486.2008.01591.x CrossRefGoogle Scholar
  87. You Q, Kang S, Aguilar E, Yan Y (2008) Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961–2005. J Geophys Res 113(D7):101. doi: 10.1029/2007jd009389 CrossRefGoogle Scholar
  88. Zhao XQ, Zhou XM (1999) Ecological basis of alpine meadow ecosystem management in Tibet: Haibei alpine meadow ecosystem research station. Ambio 28(8):642–647Google Scholar
  89. Zhou XM (2001) Alpine meadow in China. Science Press, BeijingGoogle Scholar
  90. Zogg GP, Zak DR, Ringelberg DB, MacDonald NW, Pregitzer KS, White DC (1997) Compositional and functional shifts in microbial communities due to soil warming. Soil Sci Soc Am J 61(2):475–481CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Xin Jing
    • 1
  • Yonghui Wang
    • 1
  • Haegeun Chung
    • 3
  • Zhaorong Mi
    • 2
  • Shiping Wang
    • 4
  • Hui Zeng
    • 1
    • 5
  • Jin-Sheng He
    • 1
    • 2
  1. 1.Department of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of EducationPeking UniversityBeijingChina
  2. 2.Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
  3. 3.Department of Environmental EngineeringKonkuk UniversitySeoulKorea
  4. 4.Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingChina
  5. 5.Key Laboratory for Urban Habitat Environmental Science and Technology, Peking University Shenzhen Graduate SchoolPeking UniversityShenzhenChina

Personalised recommendations