, Volume 113, Issue 1–3, pp 545–561 | Cite as

Evolution of carbon fluxes during initial soil formation along the forefield of Damma glacier, Switzerland

  • K. Guelland
  • F. Hagedorn
  • R. H. Smittenberg
  • H. Göransson
  • S. M. Bernasconi
  • I. Hajdas
  • R. Kretzschmar


Soil carbon (C) fluxes, soil respiration and dissolved organic carbon (DOC) leaching were explored along the young Damma glacier forefield chronosequence (7–128 years) over a three-year period. To gain insight into the sources of soil CO2 effluxes, radiocarbon signatures of respired CO2 were measured and a vegetation-clipping experiment was performed. Our results showed a clear increase in soil CO2 effluxes with increasing site age from 9 ± 1 to 160 ± 67 g CO2–C m−2 year−1, which was linked to soil C accumulation and development of vegetation cover. Seasonal variations of soil respiration were mainly driven by temperature; between 62 and 70 % of annual CO2 effluxes were respired during the 4-month long summer season. Sources of soil CO2 effluxes changed along the glacier forefield. For most recently deglaciated sites, radiocarbon-based age estimates indicated ancient C to be the dominant source of soil-respired CO2. At intermediate site age (58–78 years), the contribution of new plant-fixed C via rhizosphere respiration amounted up to 90 %, while with further soil formation, heterotrophically respired C probably from accumulated ‘older’ soil organic carbon (SOC) became increasingly important. In comparison with soil respiration, DOC leaching at 10 cm depth was small, but increased similarly from 0.4 ± 0.02 to 7.4 ± 1.6 g DOC m−2 year−1 over the chronosequence. A strong rise of the ratio of SOC to secondary iron and aluminium oxides strongly suggests that increasing DOC leaching with site age results from a faster increase of the DOC source, SOC, than of the DOC sink, reactive mineral surfaces. Overall, C losses from soil by soil respiration and DOC leaching increased from 9 ± 1 to 70 ± 17 and further to 168 ± 68 g C m−2 year−1 at the <10, 58–78, and 110–128 year old sites. By comparison, total ecosystem C stocks increased from 0.2 to 1.1 and to 3.1 kg C m−2 from the young to intermediate and old sites. Therefore, the ecosystem evolved from a dominance of C accumulation in the initial phase to a high throughput system. We suggest that the relatively strong increase in soil C stocks compared to C fluxes is a characteristic feature of initial soil formation on freshly exposed rocks.


Glacier forefield Chronosequence Soil formation DOC Soil respiration Carbon sources 



We thank D. Bornhauser, A. Kern, L. Wacker (ETH) M. Gierga (ETH), A. Zürcher, and N. Hajjar (Swiss Federal Institute WSL) for their help in the field and laboratory. Furthermore, special thanks to J. Magnusson (Swiss Federal Institute SLF) for his constructive support in meteorological and hydrological questions regarding the Damma glacier forefield. This study was financially supported by the Competence Center Environment and Sustainability of the ETH domain (CCES, project BigLink), and also supported by Deutsche Forschungsgemeinschaft (DFG, Bonn) as part of the Transregional Collaborative Research Centre 38 (SFB/TRR 38).


  1. Anesio AM, Sattler B, Foreman C, Telling J, Hodson A, Tranter M, Psenner R (2010) Carbon fluxes through bacterial communities on glacier surfaces. Ann Glaciol 51(56):32–40CrossRefGoogle Scholar
  2. Bader MKF, Körner C (2010) No overall stimulation of soil respiration under mature deciduous forest trees after 7 years of CO2 enrichment. Glob Change Biol 16:2830–2843. doi: 10.1111/j.1365-2486.2010.02159.x CrossRefGoogle Scholar
  3. Bahn M, Knapp M, Garajova Z, Pfahringer N, Cernusca A (2006) Root respiration in temperate mountain grasslands differing in land use. Glob Change Biol 12(6):995–1006. doi: 10.1111/j.1365-2486.2006.01144.x CrossRefGoogle Scholar
  4. Balesdent J, Wagner GH, Mariotti A (1988) Soil organic-matter turnover in long-term field experiments as revealed by C-13 natural abundance. Soil Sci Soc Am J 52(1):118–124CrossRefGoogle Scholar
  5. Bardgett RD, Walker LR (2004) Impact of coloniser plant species on the development of decomposer microbial communities following deglaciation. Soil Biol Biochem 36(3):555–559. doi: 10.1016/j.soilbio.2003.11.002 CrossRefGoogle Scholar
  6. Bardgett RD, Richter A, Bol R, Garnett MH, Baumler R, Xu XL, Lopez-Capel E, Manning DAC, Hobbs PJ, Hartley IR, Wanek W (2007) Heterotrophic microbial communities use ancient carbon following glacial retreat. Biol Lett 3(5):487–490. doi: 10.1098/rsbl.2007.0242 CrossRefGoogle Scholar
  7. Becker T, Dierschke H (2005) Primary succession on the forefield of the Obersulzbachkees Glacier (Hohe Tauern, Austria): a chronosequence of almost 150 years (Primarsukzession im Gletschervorfeld des Obersulzbachkees (Hohe Tauern, Osterreich), eine Zeitreihe fiber fast 150 Jahre). Tuexenia 25:111–139Google Scholar
  8. Bernasconi SM, Bauder A, Bourdon B, Brunner I, Bünemann E, Christl I, Derungs N, Edwards P, Farinotti D, Frey B, Frossard E, Furrer F, Gierga M, Göransson H, Guelland K, Hagedorn F, Hajdas I, Hindshaw RS, Ivy-Ochs S, Jansa J, Jonas T, Kiczka M, Kretzschmar R, Lemarchand E, Luster J, Magnusson J, Mitchell EAD, Olde Venterink H, Plötze M, Reynolds BC, Reynolds BC, Smittenberg RH, Stähli M, Tamburini F, Tipper ET, Wacker L, Welc M, Wiederhold JG, Zeyer J, Zimmermann S, Zumsteg A (2011) Chemical and biological gradients along the Damma glacier soil chronosequence (Switzerland). Vadose Zone J 10(3):867–883CrossRefGoogle Scholar
  9. Brooks PD, Schmidt SK, Williams MW (1997) Winter production of CO2 and N2O from Alpine tundra: environmental controls and relationship to inter-system C and N fluxes. Oecologia 110(3):403–413Google Scholar
  10. Buchmann N (2000) Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biol Biochem 32(11–12):1625–1635CrossRefGoogle Scholar
  11. Chin YP, Aiken G, Oloughlin E (1994) Molecular-weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environ Sci Technol 28(11):1853–1858. doi: 10.1021/es00060a015 CrossRefGoogle Scholar
  12. Craine JM, Wedin DA, Chapin FS (1999) Predominance of ecophysiological controls on soil CO2 flux in a Minnesota grassland. Plant Soil 207(1):77–86CrossRefGoogle Scholar
  13. Dilling J, Kaiser K (2002) Estimation of the hydrophobic fraction of dissolved organic matter in water samples using UV photometry. Water Res 36(20):5037–5044. doi: 10.1016/s0043-1354(02)00365-2 CrossRefGoogle Scholar
  14. Dümig A, Smittenberg R, Kögel-Knabner I (2011) Concurrent evolution of organic and mineral components during initial soil development after retreat of the Damma glacier, Switzerland. Geoderma 163(1–2):83–94. doi: 10.1016/j.geoderma.2011.04.006 CrossRefGoogle Scholar
  15. Egli M, Mirabella A, Sartori G, Zanelli R, Bischof S (2006) Effect of north and south exposure on weathering rates and clay mineral formation in Alpine soils. Catena 67(3):155–174. doi: 10.1016/j.catena.2006.02.010 CrossRefGoogle Scholar
  16. Esperschütz J, Perez-de-Mora A, Schreiner K, Welzl G, Bruegger F, Zeyer J, Hagedorn F, Munch JC, Schloter M (2011) Microbial food web dynamics along a soil chronosequence of a glacier forefield. Biogeosci Discuss 8:1275–1308CrossRefGoogle Scholar
  17. Frey B, Rieder SR, Brunner I, Plotze M, Koetzsch S, Lapanje A, Brandl H, Furrer G (2010) Weathering-associated bacteria from the Damma glacier forefield: physiological capabilities and impact on granite dissolution. Appl Environ Microbiol 76(14):4788–4796. doi: 10.1128/aem.00657-10 CrossRefGoogle Scholar
  18. Giesler R, Högberg MN, Strobel BW, Richter A, Nordgren A, Högberg P (2007) Production of dissolved organic carbon and low-molecular weight organic acids in soil solution driven by recent tree photosynthate. Biogeochemistry 84(1):1–12. doi: 10.1007/s10533-007-9069-3 CrossRefGoogle Scholar
  19. GOCS (2007) National climate observing system. GOCS, BernGoogle Scholar
  20. Göransson H, Venterink HO, Bååth E (2011) Soil bacterial growth and nutrient limitation along a chronosequence from a glacier forefield. Soil Biol Biochem 43(6):1333–1340. doi: 10.1016/j.soilbio.2011.03.006 CrossRefGoogle Scholar
  21. Hagedorn F, Saurer M, Blaser P (2004) A C-13 tracer study to identify the origin of dissolved organic carbon in forested mineral soils. Eur J Soil Sci 55(1):91–100. doi: 10.1046/j.1365-2389.2003.00578.x CrossRefGoogle Scholar
  22. Hagedorn F, Martin M, Rixen C, Rusch S, Bebi P, Zürcher A, Siegwolf RTW, Wipf S, Escape C, Roy J, Hattenschwiler S (2010) Short-term responses of ecosystem carbon fluxes to experimental soil warming at the Swiss alpine treeline. Biogeochemistry 97(1):7–19. doi: 10.1007/s10533-009-9297-9 CrossRefGoogle Scholar
  23. Hawes TC (2008) Aeolian fallout on recently deglaciated terrain in the high Arctic. Polar Biol 31:295–301. doi: 10.1007/s00300-007-0357-0 CrossRefGoogle Scholar
  24. Hindshaw RS, Reynolds BC, Wiederhold JG, Kretzschmar R, Bourdon B (2011) Calcium isotopes in a proglacial weathering environment: Damma glacier, Switzerland. Geochim Cosmochim Acta 75(1):106–118. doi: 10.1016/j.gca.2010.09.038 CrossRefGoogle Scholar
  25. Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Ottosson-Lofvenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792CrossRefGoogle Scholar
  26. Hubbard RM, Ryan MG, Elder K, Rhoades CC (2005) Seasonal patterns in soil surface CO2 flux under snow cover in 50 and 300 year old subalpine forests. Biogeochemistry 73(1):93–107. doi: 10.1007/s10533-004-1990-0 CrossRefGoogle Scholar
  27. Jones MH, Fahnestock JT, Stahl PD, Welker JM (2000) A note on summer CO2 flux, soil organic matter, and microbial biomass from different high arctic ecosystem types in northwestern Greenland. Arct Antarct Alp Res 32(1):104–106CrossRefGoogle Scholar
  28. Kaiser K, Guggenberger G (2000) The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Org Geochem 31(7–8):711–725CrossRefGoogle Scholar
  29. Kaiser K, Zech W (1998) Soil dissolved organic matter sorption as influenced by organic and sesquioxide coatings and sorbed sulfate. Soil Sci Soc Am J 62(1):129–136CrossRefGoogle Scholar
  30. Kaiser K, Guggenberger G, Zech W (1996) Sorption of DOM and DOM fractions to forest soils. Geoderma 74(3–4):281–303. doi: 10.1016/s0016-7061(96)00071-7 CrossRefGoogle Scholar
  31. Kalbitz K, Kaiser K (2008) Contribution of dissolved organic matter to carbon storage in forest mineral soils. J Plant Nutr Soil Sci-Z Pflanzenernahr Bodenkd 171(1):52–60. doi: 10.1002/jpln.200700043 CrossRefGoogle Scholar
  32. Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165(4):277–304. doi: 10.1097/00010694-200004000-00001 CrossRefGoogle Scholar
  33. Kiczka M, Wiederhold JG, Frommer J, Voegelin A, Kraemer SM, Bourdon B, Kretzschmar R (2011) Iron speciation and isotope fractionation during silicate weathering and soil formation in an alpine glacier forefield chronosequence. Geochim Cosmochim Acta 75(19):5559–5573. doi: 10.1016/j.gca.2011.07.008 CrossRefGoogle Scholar
  34. Kindler R, Siemens J, Kaiser K, Walmsley DC, Bernhofer C, Buchmann N, Cellier P, Eugster W, Gleixner G, Grunwald T, Heim A, Ibrom A, Jones SK, Jones M, Klumpp K, Kutsch W, Larsen KS, Lehuger S, Loubet B, McKenzie R, Moors E, Osborne B, Pilegaard K, Rebmann C, Saunders M, Schmidt MWI, Schrumpf M, Seyfferth J, Skiba U, Soussana J-F, Sutton MA, Tefs C, Vowinckel B, Zeeman MJ, Kaupenjohann M (2011) Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance. Glob Change Biol 17(2):1167–1185. doi: 10.1111/j.1365-2486.2010.02282.x CrossRefGoogle Scholar
  35. Kirschbaum MUF (2000) Will changes in soil organic carbon act as a positive or negative feedback on global warming? Biogeochemistry 48(1):21–51. doi: 10.1023/a:1006238902976 CrossRefGoogle Scholar
  36. Lazzaro A, Abegg C, Zeyer J (2009) Bacterial community structure of glacier forefields on siliceous and calcareous bedrock. Eur J Soil Sci 60(6):860–870. doi: 10.1111/j.1365-2389.2009.01182.x CrossRefGoogle Scholar
  37. Levin I, Hesshaimer V (2000) Radiocarbon—a unique tracer of global carbon cycle dynamics. Radiocarbon 42(1):69–80Google Scholar
  38. Lilienfein J, Qualls RG, Uselman SM, Bridgham SD (2004a) Adsorption of dissolved organic and inorganic phosphorus in soils of a weathering chronosequence. Soil Sci Soc Am J 68(2):620–628CrossRefGoogle Scholar
  39. Lilienfein J, Qualls RG, Uselman SM, Bridgham SD (2004b) Adsorption of dissolved organic carbon and nitrogen in soils of a weathering chronosequence. Soil Sci Soc Am J 68(1):292–305Google Scholar
  40. Liptzin D, Williams MW, Helmig D, Seok B, Filippa G, Chowanski K, Hueber J (2009) Process-level controls on CO2 fluxes from a seasonally snow-covered subalpine meadow soil, Niwot Ridge, Colorado. Biogeochemistry (Dordrecht) 95(1):151–166. doi: 10.1007/s10533-009-9303-2 CrossRefGoogle Scholar
  41. Liski J, Palosuo T, Peltoniemi M, Sievanen R (2005) Carbon and decomposition model Yasso for forest soils. Ecol Model 189(1–2):168–182. doi: 10.1016/j.ecolmodel.2005.03.005 CrossRefGoogle Scholar
  42. Massman WJ (1998) A review of the molecular diffusivities of H2O, CO2, CH4, CO, O3, SO2, NH3, N2O, NO, and NO2 in air, O2 and N2 near STP. Atmos Environ 32(6):1111–1127CrossRefGoogle Scholar
  43. Mavris C, Egli M, Plotze M, Blum JD, Mirabella A, Giaccai D, Haeberli W (2010) Initial stages of weathering and soil formation in the Morteratsch proglacial area (Upper Engadine, Switzerland). Geoderma 155(3–4):359–371. doi: 10.1016/j.geoderma.2009.12.019 CrossRefGoogle Scholar
  44. McDowell WH, Likens GE (1988) Origin, composition, and flux of dissolved organic-carbon in the Hubbard Brook valley. Ecol Monogr 58(3):177–195. doi: 10.2307/2937024 CrossRefGoogle Scholar
  45. Monson RK, Burns SP, Williams MW, Delany AC, Weintraub M, Lipson DA (2006) The contribution of beneath-snow soil respiration to total ecosystem respiration in a high elevation, subalpine forest. Glob Biogeochem Cycle 20 (3). doi: 10.1029/2005gb002684
  46. Müller M, Alewell C, Hagedorn F (2009) Effective retention of litter-derived dissolved organic carbon in organic layers. Soil Biol Biochem 41(6):1066–1074. doi: 10.1016/j.soilbio.2009.02.007 CrossRefGoogle Scholar
  47. Musselman RC, Massman WJ, Frank JM, Korfmacher JL (2005) The temporal dynamics of carbon dioxide under snow in a high elevation rocky mountain subalpine forest and meadow. Arct Antarct Alp Res 37(4):527–538CrossRefGoogle Scholar
  48. Nakatsubo T, Bekku Y, Kume A, Koizumi H (1998) Respiration of the belowground parts of vascular plants: its contribution to total soil respiration on a successional glacier foreland in Ny-Alesund, Svalbard. Polar Res 17(1):53–59CrossRefGoogle Scholar
  49. Nilsen L, Elvebakk A, Brossard T, Joly D (1999) Mapping and analysing arctic vegetation: evaluating a method coupling numerical classification of vegetation data with SPOT satellite data in a probability model. Int J Remote Sens 20(15–16):2947–2977CrossRefGoogle Scholar
  50. Pataki DE, Ehleringer JR, Flanagan LB, Yakir D, Bowling DR, Still CJ, Buchmann N, Kaplan JO, Berry JA (2003) The application and interpretation of Keeling plots in terrestrial carbon cycle research. Glob Biogeochem Cycle 17(1):1022. doi: 10.1029/2001gb001850 CrossRefGoogle Scholar
  51. Qualls RG, Bridgham SD (2005) Mineralization rate of C-14-labelled dissolved organic matter from leaf litter in soils of a weathering chronosequence. Soil Biol Biochem 37(5):905–916. doi: 10.1016/j.soilbio.2004.08.029 CrossRefGoogle Scholar
  52. Ruff M, Szidat S, Gaggeler HW, Suter M, Synal HA, Wacker L (2010) Gaseous radiocarbon measurements of small samples. Nucl Instrum Methods Phys Res Sect B 268(7–8):790–794. doi: 10.1016/j.nimb.2009.10.032 CrossRefGoogle Scholar
  53. Schaltegger U (1990) The Central Aar Granite—highly differentiated calc-alkaline magmatism in the Aar Massif (Central Alps, Switzerland). Eur J Mineral 2(2):245–259Google Scholar
  54. Schindlbacher A, Zechmeister-Boltenstern S, Glatzel G, Jandl R (2007) Winter soil respiration from an Austrian mountain forest. Agric For Meteorol 146(3–4):205–215. doi: 10.1016/j.agrformet.2007.06.001 CrossRefGoogle Scholar
  55. Schlesinger WH (1990) Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature 348(6298):232–234CrossRefGoogle Scholar
  56. Schmidt SK, Reed SC, Nemergut DR, Grandy AS, Cleveland CC, Weintraub MN, Hill AW, Costello EK, Meyer AF, Neff JC, Martin AM (2008) The earliest stages of ecosystem succession in high-elevation (5000 metres above sea level), recently deglaciated soils. Proc R Soc B 275(1653):2793–2802. doi: 10.1098/rspb.2008.0808 CrossRefGoogle Scholar
  57. Sigler WV, Zeyer J (2002) Microbial diversity and activity along the forefields of two receding glaciers. Microb Ecol 43(4):397–407. doi: 10.1007/s00248-001-0045-5 CrossRefGoogle Scholar
  58. Smittenberg RH, Gierga M, Görannson H, Christl I, Farinotti D, Bernasconi SM (2012) Climate-sensitive ecosystem carbon dynamics along the soil chronosequence of Damma glacier forefield, Switzerland. Glob Change Biol 18:1941–1955. doi: 10.1111/j.1365-2486.2012.02654.x CrossRefGoogle Scholar
  59. Sollins P, Homann P, Caldwell BA (1996) Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma 74(1–2):65–105. doi: 10.1016/s0016-7061(96)00036-5 CrossRefGoogle Scholar
  60. Töwe S, Albert A, Kleineidam K, Brankatschk R, Dümig A, Welzl G, Munch JC, Zeyer J, Schloter M (2010) Abundance of microbes involved in nitrogen transformation in the rhizosphere of Leucanthemopsis alpina (L.) Heywood grown in soils from different sites of the Damma glacier forefield. Microb Ecol 60(4):762–770. doi: 10.1007/s00248-010-9695-5 CrossRefGoogle Scholar
  61. Trumbore S (2000) Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics. Ecol Appl 10(2):399–411. doi: 10.2307/2641102 CrossRefGoogle Scholar
  62. Tscherko D, Rustemeier J, Richter A, Wanek W, Kandeler E (2003) Functional diversity of the soil microflora in primary succession across two glacier forelands in the Central Alps. Eur J Soil Sci 54(4):685–696. doi: 10.1046/j.1365-2389.2003.00570.x CrossRefGoogle Scholar
  63. VAW (2011) Swiss glacier monitoring network. Versuchsanstalt für Wasserbau, ETH Zurich, ZurichGoogle Scholar
  64. Walker LR, del Moral R (2003) Primary succession and ecosystem rehabilitation. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  65. Warren CR, Taranto MT (2011) Ecosystem respiration in a seasonally snow-covered subalpine grassland. Arct Antarct Alp Res 43(1):137–146. doi: 10.1657/1938-4246-43.1.137 CrossRefGoogle Scholar
  66. Welker JM, Fahnestock JT, Jones MH (2000) Annual CO2 flux in dry and moist arctic tundra: field responses to increases in summer temperatures and winter snow depth. Clim Change 44(1–2):139–150CrossRefGoogle Scholar
  67. White AF, Brantley SL (2003) The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field? Chem Geol 202(3–4):479–506. doi: 10.1016/j.chemgeo.2003.03.001 CrossRefGoogle Scholar
  68. White DM, Hodkinson ID, Seelen SJ, Coulson SJ (2007) Characterization of soil carbon from a Svalbard glacier-retreat chronosequence using pyrolysis–GC/MS analysis. J Anal Appl Pyrolysis 78(1):70–75. doi: 10.1016/j.jaap.2006.04.003 CrossRefGoogle Scholar
  69. Wookey PA, Bol RA, Caseldine CJ, Harkness DD (2002) Surface age, ecosystem development, and C isotope signatures of respired CO2 in an alpine environment, north Iceland. Arct Antarct Alp Res 34(1):76–87CrossRefGoogle Scholar
  70. Wrb IWG (2006) World reference book for soil resources. World soil resources report. FAO, RomeGoogle Scholar
  71. Yoshitake S, Uchida M, Koizumi H, Nakatsubo T (2007) Carbon and nitrogen limitation of soil microbial respiration in a high arctic successional glacier foreland near Ny-angstrom lesund, Svalbard. Polar Res 26(1):22–30. doi: 10.1111/j.1751-8369.2007.00001.x CrossRefGoogle Scholar
  72. Zumsteg A, Luster J, Göransson H, Smittenberg RH, Brunner I, Bernasconi SM, Zeyer J, Frey B (2012) Bacterial, archaeal and fungal succession in the forefield of a receding glacier. Microb Ecol 63:552–564CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • K. Guelland
    • 5
    • 6
  • F. Hagedorn
    • 1
  • R. H. Smittenberg
    • 2
    • 4
  • H. Göransson
    • 3
  • S. M. Bernasconi
    • 4
  • I. Hajdas
    • 5
  • R. Kretzschmar
    • 6
  1. 1.Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
  2. 2.Department of Geological SciencesStockholm UniversityStockholmSweden
  3. 3.School of the Environment and Natural RecoursesBangor UniversityBangorUK
  4. 4.Geological InstituteETH ZurichZurichSwitzerland
  5. 5.Institute for Particle PhysicsETH ZurichZurichSwitzerland
  6. 6.Soil Chemistry Group, Institute of Biogeochemistry and Pollutant DynamicsETH ZurichZurichSwitzerland

Personalised recommendations