, Volume 110, Issue 1–3, pp 47–55 | Cite as

Production of dimethylsulphide during the seasonal anoxia off Goa

  • Damodar M. Shenoy
  • K. B. Sujith
  • Mangesh U. Gauns
  • Shrikant Patil
  • Amit Sarkar
  • Hema Naik
  • P. V. Narvekar
  • S. W. A. Naqvi


Subsurface waters over the western Indian continental shelf experience seasonal anoxia towards the end of the southwest monsoon season. During a 3-day study carried out at the Candolim time series site (off the coast of Goa), dimethylsulphide (DMS) concentrations showed a 40-fold increase to a maximum of 442 nM at 25 m depth compared to the oxygenated surface waters. This extremely high DMS was found to be associated with relatively low chlorophyll a, low phytoplankton cell counts and a high concentration of hydrogen sulphide. However, total dimethylsulphoniopropionate, total dimethylsulphoxide and methanethiol concentrations were quite low and unlikely to account for the DMS build-up through presently known pathways of DMS production. While there are several possible mechanisms for the observed accumulation of DMS, we were unable to pinpoint the exact pathway of DMS production. Future work will involve investigation of the source of DMS through sediment slurry experiments, to explore this interesting link between the carbon and sulphur cycles under anoxic conditions.


DMS DMSP DMSO Anoxia Arabian Sea 



The authors wish to thank their colleagues A. K. Pratihary, H. S. Dalvi, B. Thorat, A. Methar, V. Desai and M. Soares for their contribution and generation of some of the data presented in this article. Help rendered by M. Naik from ship cell and Ship’s crew is greatly appreciated. The authors are grateful to Gill Malin for improving the phraseology of the manuscript. Financial assistance for this study came from project OLP0016. A. Sarkar acknowledges CSIR for the financial support in the form of fellowship. This is NIO's contribution no. 5135.


  1. Ayers GP, Grass JL (1991) Seasonal relationship between cloud condensation nuclei and aerosol methane sulphonate in marine air. Nature 353:834–835CrossRefGoogle Scholar
  2. Bates TS, Calhoun JA, Quinn PK (1992) Variations in the methane sulphonate to sulphate molar ratio in submicrometer marine aerosol particles over the South Pacific Ocean. J Geophys Res 97:9859–9865CrossRefGoogle Scholar
  3. Baumann MEM, Frederico PB, Regina S (1994) The influence of light and temperature on carbon-specific DMS release by cultures of Phaeocystis antarctica and three Antarctic diatoms. Mar Chem 45:129–136CrossRefGoogle Scholar
  4. Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326:655–661CrossRefGoogle Scholar
  5. Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458CrossRefGoogle Scholar
  6. Dacey JWH, Blough NV (1987) Hydroxide decomposition of dimethylsulfoniopropionate to dimethylsulfide. Geophys Res Lett 14:1246–1249CrossRefGoogle Scholar
  7. Ferchichi M, Hemme D, Nardi M (1986) Induction of methanethiol production by Brevibacterium linens CNRZ 918. J Gen Microbiol 132:3075–3082Google Scholar
  8. Gondwe M, Krol MW, Gieskes WK, de Baar H (2003) The contribution of ocean-leaving DMS to the global atmospheric burdens of DMS, MSA, SO2, and NSS SO4 . Glob Biogeochem Cycles 17(2):1056. doi: 10.1029/2002GB001937 CrossRefGoogle Scholar
  9. Hillebrand H, Durselen CD, Krischtel D, Pollyngher U, Zohari T (1999) Bio-volume calculation for pelagic and benthic microalgae. J Phycol 35:403–424CrossRefGoogle Scholar
  10. Holligan PM, Turner SM, Liss PS (1987) Measurements of dimethyl sulphide in frontal regions. Cont Shelf Res 7:213–224CrossRefGoogle Scholar
  11. Jonkers HM, van der Maarel MJEC, van Gemerden H, Hansen TA (1996) Dimethylsulfoxide reduction by sulfate-reducing bacteria. FEMS Microbiol Lett 136:283–287Google Scholar
  12. Jonkers HM, Koopmans GF, van Gemerden H (1998) Dynamics of dimethyl sulfide in a marine microbial mat. Microb Ecol 36(1):93–100CrossRefGoogle Scholar
  13. Kadota H, Ishida Y (1972) Production of volatile sulfur compounds by micro-organisms. Annu Rev Microbiol 26:127–138CrossRefGoogle Scholar
  14. Kiene RP, Bates TS (1990) Biological removal of dimethylsulfide from sea water. Nature 345:702–705CrossRefGoogle Scholar
  15. Kiene RP, Capone DG (1988) Microbial transformation of methylated sulfur compounds in anoxic salt marsh sediments. Microb Ecol 15:275–291CrossRefGoogle Scholar
  16. Kiene RP, Visscher PT (1987) Production and fate of methylated sulfur compounds from methionine and dimethylsulfoniopropionate in anoxic salt marsh sediments. Appl Environ Microbiol 53:2426–2434Google Scholar
  17. Kiene RP, Linn LG, Burton JA (2000) New and important roles for DMSP in marine microbial communities. J Sea Res 43:209–224CrossRefGoogle Scholar
  18. Lebour M (1978) The plankton diatoms of Northern Seas. Otto Koeltz Science Publishers, D-6240, KoenigsteinGoogle Scholar
  19. Leck C, Bigg EK (2005) Biogenic particles in the surface microlayer and overlaying atmosphere in the central Arctic Ocean during summer. Tellus 57B:305–316Google Scholar
  20. Lin YS, Heuer VB, Ferdelman TG, Hinrichs KU (2010) Microbial conversion of inorganic carbon to dimethyl sulfide in anoxic lake sediment (Plußsee, Germany). Biogeosci Discuss 7:2569–2599CrossRefGoogle Scholar
  21. Liss PS, Malin G, Turner SM (1993) Production of DMS by marine phytoplankton. In: Restelli G, Angeletti G (eds) Dimethyl sulphide: oceans, atmosphere and climate. Kluwer Academic, Dordrecht, pp 1–14Google Scholar
  22. Malin G, Turner S, Liss P, Holligan P, Harbour D (1993) Dimethylsulfide and dimethylsulphoniopropionate in the Northeast Atlantic during a summer coccolithophore bloom. Deep Sea Res 40:1487–1508CrossRefGoogle Scholar
  23. Malin G, Wilson WH, Bratbak G, Liss PS, Mann N (1998) Elevated production of dimethylsulfide resulting from viral infection of cultures of Phaeocystis pouchetii. Limnol Oceanogr 43:1389–1393CrossRefGoogle Scholar
  24. Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol Oceanogr 43(3):569–579CrossRefGoogle Scholar
  25. Moran JJ, House CH, Vrentas JM, Freeman KH (2008) Methyl sulfide production by a novel carbon monoxide metabolism in Methanosarcina acetivorans. Appl Environ Microbiol 74:540–542CrossRefGoogle Scholar
  26. Naqvi SWA, Jayakumar DA, Narvekar PV, Naik H, Sarma VVSS, D’Souza W et al (2000) Increased marine production of N2O due to intensifying anoxia on the Indian continental shelf. Nature 408:346–349CrossRefGoogle Scholar
  27. Naqvi SWA, Naik H, Partihary A, D’Souza W, Narvekar PV, Jayakumar DA (2006) Coastal versus open ocean denitrification in Arabian Sea. Biogeoscience 3:621–633CrossRefGoogle Scholar
  28. Naqvi SWA, Naik H, Jayakumar A, Pratihary AK, Narvenkar G, Kurian S, Agnihotri R, Shailaja MS, Narvekar PV (2009) Seasonal anoxia over the western Indian continental shelf. In: Wiggert JD, Hood RR, Naqvi SWA, Brink KH, Smith SL (eds) Indian Ocean biogeochemical processes and ecological variability. Geophys Monogr Ser 185:333–345Google Scholar
  29. Parab SG, Matondkar SGP, Gomes HR, Goes JI (2006) Monsoon driven changes in 25 phytoplankton populations in the eastern Arabian Sea as revealed by microscopy and HPLC pigment analysis. Cont Shelf Res 26:2538–2558CrossRefGoogle Scholar
  30. Sawant S, Madhupratap M (1996) Seasonality and composition of phytoplankton in the Arabian Sea. Curr Sci 71:869–873Google Scholar
  31. Schott FA, McCreary JP Jr (2001) The monsoon circulation of the Indian Ocean. Prog Oceanogr 51(1):1–123CrossRefGoogle Scholar
  32. Shenoy DM, Kumar MD (2007) Variability in abundance and fluxes of dimethyl sulphide in the Indian Ocean. Biogeochemistry 83:277–292CrossRefGoogle Scholar
  33. Shenoy DM, Patil JS (2003) Temporal variations in dimethylsulphoniopropionate and dimethyl sulphide in the Zuari estuary, Goa (India). Mar Environ Res 56(3):387–402CrossRefGoogle Scholar
  34. Simo R, Grimalt JO, Albaigis J (1996) Sequential method for the field determination of nanomolar concentrations of dimethyl sulfoxide in natural waters. Anal Chem 68:1493–1498CrossRefGoogle Scholar
  35. Simó R, Carlos PA, Malin G, Joan OG (2000) Biological turnover of DMS, DMSP and DMSO in contrasting open-sea waters. Mar Ecol Prog Ser 203:1–11CrossRefGoogle Scholar
  36. Stefels J, van Rijssel M, Hansen TA, Dijkhuizen L, Gieskes WWC (eds) (2000), Proceedings of second international symposium on biological and environmental chemistry of DMS (P) and related compounds, J Sea Res 43:1–118Google Scholar
  37. Stets EG, Hines ME, Kiene RP (2004) Thiol methylation potential an anoxic, low-pH wetland sediments and its relationship with dimethylsulfide production and organic carbon cycling. FEMS Microbiol Ecol 47:1–11CrossRefGoogle Scholar
  38. Subramanyan R (1946) A systematic account of the marine plankton diatoms off the Madras Coast. Proc Indian Acad Sci 24B:85–197Google Scholar
  39. Subramanyan R (1968) The dinophyceae of the Indian Sea. In: Marine Biological Association of India. Mar Biol Assoc India 3:118–133Google Scholar
  40. Tomas CR (1997) Identifying marine phytoplankton. Academic Press, LondonGoogle Scholar
  41. Turner M, Malin G, Bågander LE, Leck C (1990) Interlaboratory calibration and sample analysis of dimethyl sulphide in water. Mar Chem 29:47–62CrossRefGoogle Scholar
  42. UNESCO (1994) Protocols for the joint global ocean flux study (JGOFS) core measurements, Manual and Guides No. 29Google Scholar
  43. Vairavamurthy A, Andreae MO, Iverson RL (1985) Biosynthesis of dimethylsulfide and dimethylpropiothetin by Hymenomonas arterae in relation to sulfur source and salinity variations. Limnol Oceanogr 30:59–70CrossRefGoogle Scholar
  44. van Bergeijk SA, Schoenefeldt K, Stal LJ, Huisman J (2002) Production and consumption of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in a diatom-dominated intertidal sediment. Mar Ecol Prog Ser 231:37–46CrossRefGoogle Scholar
  45. Visscher PT, Kiene RP, Taylor BF (1994) Demethylation and cleavage of dimethylsulfoniopropionate in marine intertidal sediments. FEMS Microbiol Ecol 14:179–190CrossRefGoogle Scholar
  46. Vogt C, Fischer U (1998) Influence of reduced inorganic sulfur compounds and oxygen on DMS oxidation and DMSO reduction by the marine purple “non-sulfur” bacterium Rhodovulum sulfidophilum strain W4. Microbiol Res 153:219–226CrossRefGoogle Scholar
  47. Wakeham SG, Howes BL, Dacey JWH (1984) Dimethyl sulphide in a stratified coastal salt pond. Nature 310:770–772CrossRefGoogle Scholar
  48. Wakeham SG, Howes BL, Dacey JWH (1987) Biogeochemistry of dimethylsulphide in a seasonally stratified salt pond. Geochim et Cosmochim Acta 51:1675–1684CrossRefGoogle Scholar
  49. Watts SF (2000) The mass budgets of carbonyl sulfide, dimethyl sulfide, carbon disulfide and hydrogen sulfide. Atmos Environ 34:761–779CrossRefGoogle Scholar
  50. Wolfe GV, Steinke M, Kirst GO (1997) Grazing-activated chemical defence in a unicellular marine alga. Nature 387:894–897CrossRefGoogle Scholar
  51. Zeyer J, Eicher P, Wakeham SG, Schwarzenback RP (1987) Oxidation of dimethyl sulphide to dimethyl sulfoxide by phototrophic purple bacteria. Appl Environ Microbiol 53(9):2026–2032Google Scholar
  52. Zinder SH, Brock TD (1978) Production of methane and carbon dioxide from methanethiol and DMS by anaerobic lake sediments. Nature 272:226–227CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Damodar M. Shenoy
    • 1
  • K. B. Sujith
    • 1
  • Mangesh U. Gauns
    • 1
  • Shrikant Patil
    • 1
  • Amit Sarkar
    • 1
  • Hema Naik
    • 1
  • P. V. Narvekar
    • 1
  • S. W. A. Naqvi
    • 1
  1. 1.National Institute of Oceanography (CSIR)Dona PaulaIndia

Personalised recommendations