Skip to main content
Log in

Metabolism of DMSP, DMS and DMSO by the cultivable bacterial community associated with the DMSP-producing dinoflagellate Scrippsiella trochoidea

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Bacterial species associated with the dimethylsulfoniopropionate (DMSP)-producing phytoplankton Scrippsiella trochoidea were cultured and identified, with the aim of establishing their ability to metabolise DMSP, dimethylsulfide (DMS) and dimethylsulfoxide (DMSO). Results demonstrate that of the cultivable bacteria only α-Proteobacteria were capable of producing DMS from DMSP. The concentration of DMSP was shown to affect the amount of DMS produced. Lower DMSP concentrations (1.5 μmol dm−3) were completely assimilated, whereas higher concentrations (10 μmol dm−3) resulted in increasing amounts of DMS being produced. By contrast to the restricted set of bacteria that metabolised DMSP, ~ 70% of the bacterial isolates were able to ‘consume’ DMS. However, 98-100% of the DMS removed was accounted for as DMSO. Notably, a number of these bacteria would only oxidise DMS in the presence of glucose, including members of the γ-Proteobacteria and Bacteroidetes. The observations from this study, coupled with published field data, identify DMS oxidation to DMSO as a major transformation pathway for DMS, and we speculate that the fate of DMS and DMSP in the field are tightly coupled to the available carbon produced by phytoplankton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Archer SD, Gilbert FJ, Nightingale PD, Zubkov MV, Taylor AH, Smith GC, Burkill PH (2002) Transformation of dimethylsulphoniopropionate to dimethyl sulphide during summer in the North Sea with an examination of key processes via a modelling approach. Deep-Sea Res II 49(15):3067–3101

    Article  Google Scholar 

  • Azam F (1998) Microbial control of oceanic carbon flux: the plot thickens. Science 280(5364):694–696

    Article  Google Scholar 

  • Bell WH, Lang JM, Mitchell R (1974) Selective stimulation of marine bacteria by algal extracellular products. Limnol Oceanogr 19(5):833–839

    Article  Google Scholar 

  • Biebl H, Pukall R, Lunsdorf H, Schulz S, Allgaier M, Tindall BJ, Wagner-Dobler I (2007) Description of Labrenzia alexandrii gen. nov., sp. nov., a novel alphaproteobacterium containing bacteriochlorophyll a, and a proposal for reclassification of Stappia aggregata as Labrenzia aggregata comb. nov., of Stappia marina as Labrenzia marina comb. nov. and of Stappia alba as Labrenzia alba comb. nov., and emended descriptions of the genera Pannonibacter, Stappia and Roseibium, and of the species Roseibium denhamense and Roseibium hamelinense. Int J Syst Evol Microbiol 57(5):1095–1107. doi:10.1099/ijs.0.64821-0

    Article  Google Scholar 

  • Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326:655–661

    Article  Google Scholar 

  • Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucl Acids Res 37(Suppl 1):D141–D145. doi:10.1093/nar/gkn879

    Article  Google Scholar 

  • Curson AR, Rogers R, Todd JD, Brearley CA, Johnston AW (2008) Molecular genetic analysis of a dimethylsulfoniopropionate lyase that liberates the climate-changing gas dimethylsulfide in several marine a-proteobacteria and Rhodobacter sphaeroides. Environ Microbiol 10(3):757–767

    Article  Google Scholar 

  • Dalton H, Stirling DI, Quayle JR (1982) Co-metabolism [and discussion]. Phil Trans R Soc Lond B 297(1088):481–496. doi:10.1098/rstb.1982.0056

    Article  Google Scholar 

  • de Souza MP, Yoch DC (1995) Comparative physiology of dimethyl sulfide production by dimethylsulfoniopropionate lyase in Pseudomonas doudoroffii and Alcaligenes sp. strain M3A. Appl Environ Microbiol 61(11):3986–3991

    Google Scholar 

  • del Valle DA, Kieber DJ, Kiene RP (2007) Depth-dependent fate of biologically-consumed dimethylsulfide in the Sargasso Sea. Mar Chem 103(1–2):197–208

    Article  Google Scholar 

  • del Valle DA, Kieber DJ, Toole DA, Brinkley J, Kiene RP (2009) Biological consumption of dimethylsulfide (DMS) and its importance in DMS dynamics in the Ross Sea. Antarctica. Limnol Oceanogr 54(3):785–798

    Article  Google Scholar 

  • DeLong EF, Franks DG, Alldredge AL (1993) Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol Oceanogr 38(5):924–934

    Article  Google Scholar 

  • deZwart JMM, Nelisse PN, Kuenen JG (1996) Isolation and characterization of Methylophaga sulfidovorans sp nov: An obligately methylotrophic, aerobic, dimethylsulfide oxidizing bacterium from a microbial mat. FEMS Microbiol Ecol 20(4):261–270

    Article  Google Scholar 

  • Fandino LB, Riemann L, Steward GF, Long RA, Azam F (2001) Variations in bacterial community structure during a dinoflagellate bloom analyzed by DGGE and 16S rDNA sequencing. Aquat Microb Ecol 23(2):119–130

    Article  Google Scholar 

  • Fuhrman JA, Hewson I, Schwalbach MS, Steele JA, Brown MV, Naeem S (2006) Annually reoccurring bacterial communities are predictable from ocean conditions. Proc Natl Acad Sci USA 103(35):13104–13109

    Article  Google Scholar 

  • Fuse H, Ohta M, Takimura O, Murakami K, Inoue H, Yamaoka Y, Oclarit JM, Omori T (1998) Oxidation of trichloroethylene and dimethyl sulfide by a marine Methylomicrobium strain containing soluble methane monooxygenase. Biosci Biotechnol Biochem 62(10):1925–1931

    Article  Google Scholar 

  • González JM, Kiene RP, Moran MA (1999) Transformation of sulfur compounds by an abundant lineage of marine bacteria in the alpha-subclass of the class Proteobacteria. Appl Environ Microbiol 65(9):3810–3819

    Google Scholar 

  • Green DH, Llewellyn LE, Negri AP, Blackburn SI, Bolch CJS (2004) Phylogenetic and functional diversity of the cultivable bacterial community associated with the paralytic shellfish poisoning dinoflagellate Gymnodinium catenatum. FEMS Microbiol Ecol 47(3):345–357

    Article  Google Scholar 

  • Green DH, Hart MC, Blackburn SI, Bolch CJS (2010) Bacterial diversity of Gymnodinium catenatum and its relationship to dinoflagellate toxicity. Aquat Microb Ecol 61(1):73–87. doi:10.3354/ame01437

    Article  Google Scholar 

  • Green DH, Shenoy D, Hart MC, Hatton AD (2011) DMS oxidation coupled to biomass production by a marine Flavobacterium. Appl Environ Microbiol. doi:10.1128/AEM.02675-10

    Google Scholar 

  • Hatton A, Wilson S (2007) Particulate dimethylsulphoxide and dimethylsulphoniopropionate in phytoplankton cultures and Scottish coastal waters. Aquatic Sci: Res Across Boundar 69(3):330–340

    Google Scholar 

  • Hatton AD, Malin G, McEwan AG, Liss PS (1994) Determination of dimethyl sulfoxide in aqueous solution by an enzyme-linked method. Anal Chem 66(22):4093–4096. doi:10.1021/ac00094a036

    Article  Google Scholar 

  • Hatton AD, Turner SM, Malin G, Liss P (1998) Dimethylsulphoxide and other biogenic sulphur compounds in the Galapagos plume. Deep Sea Res II 45(6):1043–1053

    Article  Google Scholar 

  • Hatton AD, Darroch L, Malin G (2004) The role of dimethylsulphoxide in the marine biogeochemical cycle of dimethylsulphide. Oceanogr Mar Biol Annu Rev 42:29–56

    Article  Google Scholar 

  • Horinouchi M, Kasuga K, Nojiri H, Yamane H, Omori T (1997) Cloning and characterization of genes encoding an enzyme which oxidizes dimethyl sulfide in Acinetobacter sp strain 20B. FEMS Microbiol Lett 155(1):99–105. doi:10.1111/j.1574-6968.1997.tb12692.x

    Article  Google Scholar 

  • Howard EC, Henriksen JR, Buchan A, Reisch CR, Burgmann H, Welsh R, Ye W, Gonzalez JM, Mace K, Joye SB, Kiene RP, Whitman WB, Moran MA (2006) Bacterial taxa that limit sulfur flux from the ocean. Science 314(5799):649–652

    Article  Google Scholar 

  • Howard EC, Sun S, Biers EJ, Moran MA (2008) Abundant and diverse bacteria involved in DMSP degradation in marine surface waters. Environ Microbiol 10(9):2397–2410

    Article  Google Scholar 

  • Keller MD, Bellows WK, Guillard RRL (1989) Dimethylsulfide production in marine phytoplankton. In: Saltzman ES, Cooper WJ (eds) Biogenic sulfur in the environment. American Chemical Society, Washington, pp 167–181

    Chapter  Google Scholar 

  • Kiene RP, Linn LJ (2000a) Distribution and turnover of dissolved DMSP and its relationship with bacterial production and dimethylsulfide in the Gulf of Mexico. Limnol Oceanogr 45(4):849–861

    Article  Google Scholar 

  • Kiene RP, Linn LJ (2000b) The fate of dissolved dimethylsulfoniopropionate (DMSP) in seawater: tracer studies using 35S-DMSP. Geochim Cosmochim Acta 64(16):2797–2810

    Article  Google Scholar 

  • Kiene RP, Linn LJ, Bruton JA (2000) New and important roles for DMSP in marine microbial communities. J Sea Res 43(3–4):209–224

    Article  Google Scholar 

  • Ledyard KM, Dacey JWH (1996) Microbial cycling of DMSP and DMS in coastal and oligotrophic seawater. Limnol Oceanogr 41(1):33–40

    Article  Google Scholar 

  • Liss PS, Hatton AD, Malin G, Nightingale PD, Turner SM (1997) Marine sulphur emissions. Philosophical Transactions- Royal Society of London Series B Biological Sciences 352:159–167

    Article  Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar BuchnerA, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer K-H (2004) ARB: a software environment for sequence data. Nucl Acids Res 32(4):1363–1371

    Article  Google Scholar 

  • Malmstrom RR, Kiene RP, Kirchman DL (2004) Identification and enumeration of bacteria assimilating dimethylsulfoniopropionate (DMSP) In the North Atlantic and Gulf of Mexico. Limnol Oceanogr 49(2):597–606

    Article  Google Scholar 

  • Miller TR, Hnilicka K, Dziedzic A, Desplats P, Belas R (2004) Chemotaxis of Silicibacter sp. strain TM1040 toward dinoflagellate products. Appl Environ Microbiol 70(8):4692–4701

    Article  Google Scholar 

  • Mitchell JG, Okubo A, Fuhrman JA (1985) Microzones surrounding phytoplankton form the basis for a stratified marine microbial ecosystem. Nature 316:58–59

    Article  Google Scholar 

  • Rinta-Kanto JM, Bürgmann H, Gifford SM, Sun S, Sharma S, del Valle DA, Kiene RP, Moran MA (2011) Analysis of sulfur-related transcription by Roseobacter communities using a taxon-specific functional gene microarray. Environ Microbiol 13(2):453–467. doi:10.1111/j.1462-2920.2010.02350.x

    Article  Google Scholar 

  • Scarratt M, Cantin G, Levasseur M, Michaud S (2000) Particle size-fractionated kinetics of DMS production: where does DMSP cleavage occur at the microscale? J Sea Res 43(3–4):245–252

    Article  Google Scholar 

  • Schäfer H (2007) Isolation of Methylophaga spp. from marine dimethylsulfide-degrading enrichment cultures and identification of polypeptides induced during growth on dimethylsulfide. Appl Environ Microbiol 73(8):2580–2591

    Article  Google Scholar 

  • Simó R (2001) Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecological and evolutionary links. Trends Ecol Evol 16(6):287–294

    Article  Google Scholar 

  • Simó R, Hatton AD, Malin G, Liss PS (1998) Particulate dimethyl sulphoxide in seawater: production by microplankton. Mar Ecol Prog Ser 167:291–296

    Article  Google Scholar 

  • Simó R, Archer SD, Pedrós-Alió C, Gilpin L, Stelfox-Widdicombe CE (2002) Coupled dynamics of dimethylsulfoniopropionate and dimethylsulfide cycling and the microbial food web in surface waters of the North Atlantic. Limnol Oceanogr 47(1):53–61

    Article  Google Scholar 

  • Stefels J (2000) Physiological aspects of the production and conversion of DMSP in marine algae and higher plants. J Sea Res 43(3–4):183–197

    Article  Google Scholar 

  • Sunda W, Kieber DJ, Kiene RP, Huntsman S (2002) An antioxidant function for DMSP and DMS in marine algae. Nature 418:317–320

    Article  Google Scholar 

  • Todd JD, Rogers R, Li YG, Wexler M, Bond PL, Sun L, Curson ARJ, Malin G, Steinke M, Johnston AWB (2007) Structural and regulatory genes required to make the gas dimethyl sulfide in bacteria. Science 315(5812):666–669. doi:10.1126/science.1135370

    Article  Google Scholar 

  • Todd JD, Curson ARJ, Dupont CL, Nicholson P, Johnston AWB (2009) The dddP gene, encoding a novel enzyme that converts dimethylsulfoniopropionate into dimethyl sulfide, is widespread in ocean metagenomes and marine bacteria and also occurs in some Ascomycete fungi. Environ Microbiol 11(6):1376–1385

    Article  Google Scholar 

  • Todd JD, Curson AR, Kirkwood M, Sullivan MJ, Green RT, Johnston AW (2011) DddQ, a novel, cupin-containing, dimethylsulfoniopropionate lyase in marine roseobacters and in uncultured marine bacteria. Environ Microbiol 13(2):427–438. doi:10.1111/j.1462-2920.2010.02348.x

    Article  Google Scholar 

  • Tripp HJ, Kitner JB, Schwalbach MS, Dacey JWH, Wilhelm LJ, Giovannoni SJ (2008) SAR11 marine bacteria require exogenous reduced sulphur for growth. Nature 452(7188):741–744

    Article  Google Scholar 

  • Turner SM, Malin G, Liss PS, Harbour DS, Holligan PM (1988) The seasonal variation of dimethyl sulfide and dimethylsulfonioproprionate concentrations in nearshore waters. Limnol Oceanogr 33(3):364–375

    Article  Google Scholar 

  • Turner SM, Malin G, BÂgander LE, Leck C (1990) Interlaboratory calibration and sample analysis of dimethyl sulphide in water. Mar Chem 29:47–62

    Article  Google Scholar 

  • van Duyl FC, Gieskes WWC, Kop AJ, Lewis WE (1998) Biological control of short-term variations in the concentration of DMSP and DMS during a Phaeocystis spring bloom. J Sea Res 40(3–4):221–231

    Article  Google Scholar 

  • Vila-Costa M, del Valle DA, Gonzalez JM, Slezak D, Kiene RP, Sanchez O, Simo R (2006) Phylogenetic identification and metabolism of marine dimethylsulfide-consuming bacteria. Environ Microbiol 8(12):2189–2200

    Article  Google Scholar 

  • Vila-Costa M, Rinta-Kanto JM, Sun S, Sharma S, Poretsky R, Moran MA (2010) Transcriptomic analysis of a marine bacterial community enriched with dimethylsulfoniopropionate. Isme J 4(11):1410–1420. doi:ismej201062

    Article  Google Scholar 

  • Weber CF, King GM (2007) Physiological, ecological, and phylogenetic characterization of Stappia, a marine CO-oxidizing bacterial genus. Appl Environ Microbiol 73(4):1266–1276

    Article  Google Scholar 

  • Zeyer J, Eicher P, Wakeham SG, Schwarzenbach RP (1987) Oxidation of dimethylsulfide to dimethylsulfoxide by phototrophic purple bacteria. Appl Environ Microbiol 53(9):2026–2032

    Google Scholar 

  • Zimmer-Faust RK, Souza MPd, Yoch DC (1996) Bacterial chemotaxis and its potential role in marine dimethylsulfide production and biogeochemical sulfur cycling. Limnol Oceanogr 41(6):1330–1334

    Article  Google Scholar 

  • Zubkov MV, Fuchs BM, Archer SD, Kiene RP, Amann R, Burkill PH (2001a) Linking the composition of bacterioplankton to rapid turnover of dissolved dimethylsulphoniopropionate in an algal bloom in the North Sea. Environ Microbiol 3(5):304–311

    Article  Google Scholar 

  • Zubkov MV, Fuchs BM, Burkill PH, Amann R (2001b) Comparison of cellular and biomass specific activities of dominant bacterioplankton groups in stratified waters of the Celtic Sea. Appl Environ Microbiol 67(11):5210–5218

    Article  Google Scholar 

  • Zubkov MV, Fuchs BM, Archer SD, Kiene RP, Amann R, Burkill PH (2002) Rapid turnover of dissolved DMS and DMSP by defined bacterioplankton communities in the stratified euphotic zone of the North Sea. Deep-Sea Res II 49(15):3017–3038

    Article  Google Scholar 

  • Zubkov MV, Linn LJ, Amann R, Kiene RP (2004) Temporal patterns of biological dimethylsulfide (DMS) consumption during laboratory-induced phytoplankton bloom cycles. Mar Ecol Prog Ser 271:77–86

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful for support from Debra Brennan for 16S rRNA clone analysis, Elaine Mitchell for flow cytometric analysis and Christine Campbell for supply of S. trochoidea CCAP 1134/1. This research was supported by the Natural Environment Research Council UK SOLAS Programme (NE/C51725X/1) and a Natural Environment Research Council-CASE studentship (NE/F006748/1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Angela D. Hatton or David H. Green.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hatton, A.D., Shenoy, D.M., Hart, M.C. et al. Metabolism of DMSP, DMS and DMSO by the cultivable bacterial community associated with the DMSP-producing dinoflagellate Scrippsiella trochoidea . Biogeochemistry 110, 131–146 (2012). https://doi.org/10.1007/s10533-012-9702-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-012-9702-7

Keywords

Navigation