, Volume 113, Issue 1–3, pp 189–212 | Cite as

Trophodynamics and functional feeding groups of North Sea fauna: a combined stable isotope and fatty acid approach

  • Benjamin Kürten
  • Inmaculada Frutos
  • Ulrich Struck
  • Suzanne J. Painting
  • Nicholas V. C. Polunin
  • Jack J. Middelburg


The trophodynamics of pelagic and benthic animals of the North Sea, North Atlantic shelf, were assessed using stable isotope analysis (SIA) of natural abundance carbon and nitrogen isotopes, lipid fingerprinting and compound-specific SIA (CSIA) of phospholipid-derived fatty acids (PLFAs). Zooplankton (z), epi- and supra-benthic macrofauna were collected in the Southern Bight, at the Oyster Grounds and at North Dogger, 111 km north of the Dogger Bank. The study included 22 taxonomic groups with particular reference to Mollusca (Bivalvia and Gastropoda) and Crustacea. Primary consumers (Bivalvia) were overall most 15N enriched in the southern North Sea (6.1‰) and more depleted in the Oyster Grounds (5.5‰) and at North Dogger (2.8‰) demonstrating differences in isotopic baselines for bivalve fauna between the study sites. Higher trophic levels also followed this trend. Over an annual cycle, consumers tended to exhibit 15N depletion during spring followed by 15N enriched signatures in autumn and winter. The observed seasonal changes of δ 15N were more pronounced for suspension feeders and deposit feeders (dfs) than for filter feeders (ffs). The position of animals in plots of δ 13C and δ 15N largely concurred with the expected position according to literature-based functional feeding groups. PLFA fingerprints of groups such as z were distinct from benthic groups, e.g. benthic ffs and dfs, and predatory macrobenthos. δ 13CPLFA signatures indicated similarities in 13C moiety sources that constituted δ 13CPLFA. Although functional groups of pelagic zooplankton and (supra-) benthic animals represented phylogenetically distinct consumer groups, δ 13CPLFA demonstrated that both groups were supported by pelagic primary production and relied on the same macronutrients such as PLFAs. Errors related to the static categorization of small invertebrates into fixed trophic positions defined by phylogenetic groupings rather than by functional feeding groups, and information on seasonal trophodynamic variability, may have implications for the reliability of numerical marine ecosystem models.


Benthic–pelagic coupling Food web structure Phospholipid-derived fatty acids Suprabenthos Trophodynamics Zooplankton 



This is a contribution to the EURopean network of excellence for OCean Ecosystems ANalysiS (EUR-OCEANS) funded by the European Commission. The field work and data interpretations were partially funded by the Department for Environment, Food and Rural Affairs (DEFRA, UK, contract ME3205). The authors thank master and crew of RV CEFAS Endeavour, the cruise leaders and several cruise participants for their support. We are thankful to M. Houtekamer, P. van Rijswijk, P. van Breugel and A. Knuijt at the Netherlands Institute of Ecology (NIOO, NL) for analytical support. We thank J. Newton and R. McGill at the Scottish Universities Environmental Research Centre (SUERC, Scottish Life Sciences Mass Spectrometry Facility, UK) for SIA and training permitted through a SUERC grant. We also thank Jon Barry and Dave Maxwell (both of Cefas) for their inputs on Fig. 4, and two anonymous reviewers for their valuable comments.

Supplementary material

10533_2012_9701_MOESM1_ESM.doc (780 kb)
Supplementary material 1 (DOC 603 kb)


  1. Asmus R, Asmus H (1991) Mussel beds: limiting or promoting phytoplankton. J Exp Mar Biol Ecol 148:215–232CrossRefGoogle Scholar
  2. Attrill MJ, Wright J, Edwards M (2007) Climate-related increases in jellyfish frequency suggest a more gelatinous future for the North Sea. Limnol Oceanogr 52:480–485CrossRefGoogle Scholar
  3. Auel H, Harjes M, da Rocha R, Stübing D, Hagen W (2002) Lipid biomarkers indicate different ecological niches and trophic relationships of the arctic hyperiid amphipods Themisto abyssorum and T. libellula. Polar Biol 25:374–383Google Scholar
  4. Beare DJ, Burns F, Greig A, Jones EG, Peach K, Kienzle M, McKenzie E, Reid DG (2004) Long-term increases in prevalence of North Sea fishes having southern biogeographic affinities. Mar Ecol Prog Ser 284:169–276CrossRefGoogle Scholar
  5. Beaugrand G, Brander KM, Lindley JA, Souissi S, Reid PC (2003) Plankton effect on cod recruitment in the North Sea. Nature 426:661–664CrossRefGoogle Scholar
  6. Bergé J-P, Barnathan G (2005) Fatty acids from lipids of marine organisms: molecular biodiversity, roles as biomarkers of biologically active compounds, and economical aspects. Adv Biochem Eng Biotechnol 96:49–125Google Scholar
  7. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Phys 37:911–917CrossRefGoogle Scholar
  8. Boschker HTS, Middelburg JJ (2002) Stable isotopes and biomarkers in microbial ecology. FEMS Microbiol Ecol 40:85–95CrossRefGoogle Scholar
  9. Boschker HTS, de Brouwer JFC, Cappenberg TE (1999) The contribution of macrophyte-derived organic matter to microbial biomass in salt-marsh sediments: stable isotope analysis of microbial biomarkers. Limnol Oceanogr 44:309–319CrossRefGoogle Scholar
  10. Boschker HTS, Kromkamp JC, Middelburg JJ (2005) Biomarker and carbon isotopic constraints on bacterial and algal community structure and functioning in a turbid, tidal estuary. Limnol Oceanogr 50:70–80CrossRefGoogle Scholar
  11. Brett MT, Müller-Navarra DC, Persson J (2009) Crustacean zooplankton fatty acid composition. In: Arts MT, Brett MT, Kainz MJ (eds) Lipids in aquatic ecosystems. Springer, Dordrecht, pp 115–146CrossRefGoogle Scholar
  12. Brunel P, Bresner M, Messier D, Poirier L, Granger D, Weistein M (1978) Le traîneau Macer-GIROQ: appareil amélioré pour l’échantillonnage quantitatif de la petite faune nageuse au voisinage du fond. Int Rev Hydrobiol 63:815–829CrossRefGoogle Scholar
  13. Callaway R, Engelhard GH, Dann J, Cotter J, Rumohr H (2007) A century of North Sea epibenthos and trawling: comparison between 1902–1912, 1982–1985 and 2000. Mar Ecol Prog Ser 346:27–43CrossRefGoogle Scholar
  14. Canuel EA, Cloern JE, Ringelberg DB, Guckert JB, Rau GH (1995) Molecular and isotopic tracers used to examine sources organic matter and its incorporation into the food webs of San Francisco Bay. Limnol Oceanogr 40:67–81CrossRefGoogle Scholar
  15. Caut S, Angulo E, Courchamp F (2009) Variation in discrimination factors (δ 15N and δ 13C): the effect of diet isotopic values and application for diet reconstruction. J Appl Ecol 46:443–453CrossRefGoogle Scholar
  16. Christensen JT, Richardson K (2008) Stable isotope evidence of long-term changes in the North Sea food web structure. Mar Ecol Prog Ser 368:1–8CrossRefGoogle Scholar
  17. Chuecas L, Riley JP (1969) Component fatty acids of the total lipids of some marine phytoplankton. J Mar Biol Assoc UK 49:97–116CrossRefGoogle Scholar
  18. Clarke KR, Gorley RN (2006) PRIMER v6: User Manual/Tutorial. PRIMER-E Ltd., PlymouthGoogle Scholar
  19. Cripps GC, Atkinson A (2000) Fatty acid composition as an indicator of carnivory in Antarctic krill, Euphausia superba. Can J Fish Aquat Sci 57:31–37CrossRefGoogle Scholar
  20. Dalsgaard J, St. John M, Kattner G, Müller-Navarra DC, Hagen W (2003) Fatty acid trophic markers in the pelagic marine environment. Adv Mar Biol 46:225–340CrossRefGoogle Scholar
  21. Darnaude AM, Salen-Picard C, Harmelin-Vivien ML (2004) Depth variation in terrestrial particulate organic matter exploitation by marine coastal benthic communities off the Rhone river delta (NW Mediterranean). Mar Ecol Prog Ser 275:47–57CrossRefGoogle Scholar
  22. Das K, Lepoint G, Leroy Y, Bouquegneau JM (2003) Marine mammals from the southern North Sea: feeding ecology data from δ 13C and δ 15N measurements. Mar Ecol Prog Ser 263:287–298CrossRefGoogle Scholar
  23. de Laender F, van Oevelen D, Soetaert K, Middelburg JJ (2010) Carbon transfer in a herbivore- and a microbial loop-dominated pelagic food web in the southern Barents Sea during spring and summer. Mar Ecol Prog Ser 398:93–107CrossRefGoogle Scholar
  24. DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506CrossRefGoogle Scholar
  25. DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341–351CrossRefGoogle Scholar
  26. Ehrenbaum E (1936) Naturgeschichte und wirtschaftliche Bedeutung der Seefische Nordeuropas, E. Schweizerbart’sche Verlagsbuchhandlung (Erwin Nägele) GmbH, StuttgartGoogle Scholar
  27. Falk-Petersen S, Hagen W, Kattner G, Clarke A, Sargent JR (2000) Lipids, trophic relationships, and biodiversity in Arctic and Antarctic krill. Can J Fish Aquat Sci 57:178–191CrossRefGoogle Scholar
  28. Fanelli E, Cartes JE, Badalamenti F, Rumolo P, Sprovieri M (2009a) Trophodynamics of suprabenthic fauna on coastal muddy bottoms of the southern Tyrrhenian Sea (western Mediterranean). J Sea Res 61:174–187CrossRefGoogle Scholar
  29. Fanelli E, Cartes JE, Rumolo P, Sprovieri M (2009b) Food-web structure and trophodynamics of mesopelagic-suprabenthic bathyal macrofauna of the Algerian Basin based on stable isotopes of carbon and nitrogen. Deep Sea Res I 56:1504–1520CrossRefGoogle Scholar
  30. Fanelli E, Cartes JE, Badalamenti F, D’Anna G, Pipitone C, Azzuro E, Rumollo P, Sprovieri M (2011) Meso-scale variability of coastal suprabenthic communities in the southern Tyrrhenian Sea (western Mediterranean). Estuar Coast Shelf Sci 91:351–360CrossRefGoogle Scholar
  31. Gentsch E, Kreibich T, Hagen W, Niehoff B (2009) Dietary shifts in the copepod Temora longicornis during spring: evidence from stable isotope signatures, fatty acid biomarkers and feeding experiments. J Plankton Res 31:45–60CrossRefGoogle Scholar
  32. Graeve M, Kattner G, Hagen W (1994) Diet-induced changes in the fatty acid composition of arctic herbivorous copepods: experimental evidence of trophic markers. J Exp Mar Biol Ecol 182:97–110CrossRefGoogle Scholar
  33. Graeve M, Kattner G, Piepenburg D (1997) Lipids in arctic benthos: Does the fatty acid and alcohol composition reflect feeding and trophic interactions? Polar Biol 18:53–61CrossRefGoogle Scholar
  34. Graf G (1989) Benthic–pelagic coupling in a deep-sea benthic community. Nature 341:437–439CrossRefGoogle Scholar
  35. Hagen W, Auel H (2001) Seasonal adaptations and the role of lipids in the oceanic zooplankton. Zoology 104:312–326CrossRefGoogle Scholar
  36. Hamerlynck O, Cattrijsse A (1994) The food of Pomatoschistus minutus (Pisces, Gobiidae) in Belgian coastal waters, and a comparison with the food of its potential competitor P. lozanoi. J Fish Biol 44:753–771Google Scholar
  37. Harwood AJP, Dennis PF, Marca AD, Pilling GM, Millner RS (2008) The oxygen isotope composition of water masses within the North Sea. Estuar Coast Shelf Sci 78:353–359CrossRefGoogle Scholar
  38. Hoch MP, Fogel ML, Kirchman DL (1992) Isotope fractionation associated with ammonium uptake by a marine bacterium. Limnol Oceanogr 37:1447–1459CrossRefGoogle Scholar
  39. Hostens K, Mees L (1999) The mysid-feeding guild of demersal fishes in the brackish zone of the Westerschelde estuary. J Fish Biol 55:704–719Google Scholar
  40. Iverson SJ (2009) Tracing aquatic food webs using fatty acids: from qualitative indicators to quantitative determination. In: Arts MT, Brett MT, Kainz MJ (eds) Lipids in aquatic ecosystems. Springer, Dordrecht, pp 281–307CrossRefGoogle Scholar
  41. Iverson SJ, Field C, Bowen WD, Blanchard W (2004) Quantitative fatty acid signature analysis: a new method of estimating predator diets. Ecol Monogr 74:211–235CrossRefGoogle Scholar
  42. Jackson DA (1993) Multivariate analysis of benthic invertebrate communities: the implication of choosing particular data standardizations, measures of association, and ordination methods. Hydrobiologia 268:9–26CrossRefGoogle Scholar
  43. Jennings S, Warr KJ (2003) Environmental correlates of large-scale spatial variation in the δ 15N of marine animals. Mar Biol 142:1131–1140Google Scholar
  44. Jennings S, Pinnegar JK, Polunin NVC, Boon TW (2001) Weak cross-species relationships between body size and trophic level belie powerful size-based trophic structuring in fish communities. J Anim Ecol 70:934–944CrossRefGoogle Scholar
  45. Jennings S, Pinnegar JK, Polunin NVC, Warr KJ (2002) Linking size-based and trophic analysis of benthic community structure. Mar Ecol Prog Ser 226:77–85CrossRefGoogle Scholar
  46. Käkela A, Crane J, Votier S, Furness RW, Käkela R (2006) Fatty acid signatures as indicators of diet in great skuas Stercocarius skua, Shetland. Mar Ecol Prog Ser 319:297–310CrossRefGoogle Scholar
  47. Kates M, Volcani BE (1966) Lipid components of diatoms. Biochim Biophys Acta 116:264–278CrossRefGoogle Scholar
  48. Kirby RR, Beaugrand G, Lindley JA, Richardson AJ, Edwards M, Reid PC (2007) Climate effects and benthic–pelagic coupling in the North Sea. Mar Ecol Prog Ser 330:31–38CrossRefGoogle Scholar
  49. Kürten B (2010) An end-to-end study of North Sea food webs. PhD Thesis, University of Newcastle upon TyneGoogle Scholar
  50. Kürten B, Painting SJ, Struck U, Polunin NVC, Middelburg JJ (2011) Tracking seasonal changes in North Sea zooplankton trophic dynamics using stable isotopes. Biogeochemistry. doi: 10.1007/s10533-011-9630-y Google Scholar
  51. Laevastu T (1963) Surface water types of the North Sea and their characteristics. Serial Atlas Mar Environ Folio 4:1–5Google Scholar
  52. Lebour MV (1922) The food of plankton organisms. J Mar Biol Assoc UK 12:644–677CrossRefGoogle Scholar
  53. Lee RF, Nevenzel JC, Paffenhöfer GA (1971) Importance of wax esters and other lipids in the marine food chain: phytoplankton and copepods. Mar Biol 9:99–108CrossRefGoogle Scholar
  54. Lindley JA, Batten SD (2002) Long-term variability in the diversity of North Sea zooplankton. J Mar Biol Assoc UK 83:31–40Google Scholar
  55. Logan JM, Lutcavage ME (2010) Reply to Hussey et al.: the requirement for accurate diet-tissue discrimination factors for interpreting stable isotopes in sharks. Hydrobiologia 654:7–12CrossRefGoogle Scholar
  56. MacAvoy SE, Arneson LS, Basset E (2006) Correlation of metabolism with tissue carbon and nitrogen turnover rate in small mammals. Oecologia 150:190–201CrossRefGoogle Scholar
  57. Madurell T, Fanelli E, Cartes JE (2008) Isotopic composition of carbon and nitrogen of suprabenthic fauna in the NW Balearic Islands (western Mediterranean). J Mar Syst 71:336–345CrossRefGoogle Scholar
  58. Mariotti A, Lancelot C, Billen G (1984) Natural isotopic composition of nitrogen as a tracer of origin for suspended organic matter in the Scheldt estuary. Geochim Cosmochim Acta 48:549–555CrossRefGoogle Scholar
  59. McQuinn IH (2009) Pelagic fish outburst or suprabenthic habitat occupation: legacy of the Atlantic cod (Gadus morhua) collapse in eastern Canada. Can J Fish Aquat Sci 66:2256–2262CrossRefGoogle Scholar
  60. Mees J, Jones MB (1997) The hyperbenthos. Oceanogr Mar Biol Annu Rev 35:221–255Google Scholar
  61. Michener RH, Kaufman L (2007) Stable isotope ratios as tracers in marine food webs: an update. In: Lajtha K, Michener RH (eds) Stable isotopes in ecology and environmental science. Blackwell Scientific Publications, London, pp 238–282CrossRefGoogle Scholar
  62. Michie MG (1982) Use of the Bray–Curtis similarity measure in cluster analysis of foraminiferal data. Math Geol 14:661–667CrossRefGoogle Scholar
  63. Middelburg JJ, Herman PMJ (2007) Organic matter processing in tidal estuaries. Mar Chem 106:127–147CrossRefGoogle Scholar
  64. Middelburg JJ, Nieuwenhuize J (1998) Carbon and nitrogen stable isotopes in suspended matter and sediments from the Schelde estuary. Mar Chem 60:217–225CrossRefGoogle Scholar
  65. Mill AC, Sweeting CJ, Barnes C, Al-Habsi SH, MacNeil MA (2008) Mass spectrometer bias in stable isotope ecology. Limnol Oceanogr Methods 6:34–39CrossRefGoogle Scholar
  66. Minagawa M, Wada E (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between δ 15N and animal age. Geochim Cosmochim Acta 48:1135–1140CrossRefGoogle Scholar
  67. Mintenbeck K, Brey T, Jacob U, Knust R, Struck U (2008) How to account for the lipid effect on carbon stable-isotope ratio (δ 13C): sample treatment effects. J Fish Biol 72:815–830CrossRefGoogle Scholar
  68. Nedwell DB, Dong LF, Sage A, Underwood GJC (2002) Variations of the nutrients loads to the mainland U.K. estuaries: correlation with catchment areas, urbanization and coastal eutrophication. Estuar Coast Shelf Sci 54:951–970CrossRefGoogle Scholar
  69. Newell RC (1984) The biological role of detritus in the marine environment. In: Fasham MJR (ed) Flows of energy and materials in marine ecosystems—theory and practice. Plenum Press, New York, pp 317–343CrossRefGoogle Scholar
  70. Ntiba MJ, Harding D (1993) The food and the feeding of the long rough dab, Hippoglossoides platessoides (Fabricius 1780) in the North Sea. J Sea Res 31:189–199CrossRefGoogle Scholar
  71. O’Reilly CM, Hecky RE, Cohen AS, Plisnier P-D (2002) Interpreting stable isotopes in food webs: recognizing the role of time averaging at different trophic levels. Limnol Oceanogr 47:306–309CrossRefGoogle Scholar
  72. Otto L, Zimmermann JTF, Furnes GK, Mork MSR, Becker G (1990) Review of the physical oceanography of the North Sea. J Sea Res 26:161–238CrossRefGoogle Scholar
  73. Pearce KF, Frid CLJ (1999) Coincident changes in four components of the North Sea ecosystem. J Mar Biol Assoc UK 79:183–185CrossRefGoogle Scholar
  74. Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science 308:1912–1915CrossRefGoogle Scholar
  75. Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293–320CrossRefGoogle Scholar
  76. Phillips DL, Gregg JW (2001) Uncertainty in source partitioning using stable isotopes. Oecologia 127:171–179CrossRefGoogle Scholar
  77. Phillips DL, Gregg JW (2003) Source partitioning using stable isotopes: coping with too many sources. Oecologia 136:261–269CrossRefGoogle Scholar
  78. Pinnegar JK, Jennings GM, O’Brien CM, Polunin NVC (2002) Long-term changes in the trophic level of the Celtic Sea fish community and fish market price distribution. J Appl Ecol 39:377–390CrossRefGoogle Scholar
  79. Pitt KA, Clement A-L, Connolly RM, Thibault-Botha D (2008) Predation by jellyfish on large and emergent zooplankton: implications for benthic–pelagic coupling. Estuar Coast Shelf Sci 76:827–833CrossRefGoogle Scholar
  80. Polunin NVC, Morales-Nin B, Pawsey WE, Cartes JE, Pinnegar JK, Moranta J (2001) Feeding relationships in Mediterranean bathyal assemblages elucidated by stable nitrogen and carbon isotope data. Mar Ecol Prog Ser 220:13–23CrossRefGoogle Scholar
  81. Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718CrossRefGoogle Scholar
  82. Prins TC, Smaal AC (1990) Benthic–pelagic coupling: the release of inorganic nutrients by an intertidal bed of Mytilus edulis. Trophic relationships in the marine environment proc. 24th Europ. mar. biol. symp., pp 89–103Google Scholar
  83. Raffaelli D, Bell E, Weithoff G, Matsumoto A, Cruz-Motta JJ, Kershaw P, Parker R, Parry D, Malcom J (2003) The ups and downs of benthic ecology: considerations of scale, heterogeneity and surveillance for benthic–pelagic coupling. J Exp Mar Biol Ecol 285–286:191–203Google Scholar
  84. Richardson AJ (2008) In hot water: zooplankton and climate change. ICES J Mar Sci 65:279–295CrossRefGoogle Scholar
  85. Rolff C (2000) Seasonal variation in δ 13C and δ 15N of size fractionated plankton at a coastal station in the northern Baltic proper. Mar Ecol Prog Ser 203:7–65CrossRefGoogle Scholar
  86. Shumway SE, Cucci TL, Newell RC, Yentsch CM (1985) Particle selection, ingestion, and absorption in filter-feeding bivalves. J Exp Mar Biol Ecol 91:77–92CrossRefGoogle Scholar
  87. Sorbe JC (1983) Description d’un traîneau destiné à l’échantillonnage quantitatif étagé de la faune suprabenthique néritique. Ann Inst Océanogr 59:117–126Google Scholar
  88. St. John M, Lund T (1996) Lipid biomarkers: linking the utilization of frontal plankton biomass to enhanced conditions of juvenile North Sea cod. Mar Ecol Prog Ser 131:75–85CrossRefGoogle Scholar
  89. Stübing D, Hagen W (2003) Fatty acid biomarker ratios—suitable trophic indicators in Antarctic euphausiids? Polar Biol 26:774–782CrossRefGoogle Scholar
  90. Sweeting CJ, Jennings S, Polunin NVC (2005) Variance in isotopic signatures as a descriptor of tissue turnover and degree of omnivory. Funct Ecol 19:777–784CrossRefGoogle Scholar
  91. Tillin HM, Hiddink JG, Jennings S, Kaiser MJ (2006) Chronic bottom trawling alters the functional composition of benthic invertebrate communities on a sea-basin scale. Mar Ecol Prog Ser 318:31–45CrossRefGoogle Scholar
  92. Vallet C, Dauvin J-C (2001) Biomass changes and bentho-pelagic transfers throughout the Benthic Boundary Layer in the English Channel. J Plankton Res 23:903–922CrossRefGoogle Scholar
  93. van Beusekom JEE, Diel-Christiansen S (2009) Global change and the biogeochemistry of the North Sea: the possible role of phytoplankton and phytoplankton grazing. Int J Earth Sci 98:259–280Google Scholar
  94. van Leeuwen SM, van der Molen J, Ruardij P, Fernand L, Jickells T (2012) Modelling the contribution of deep chlorophyll maxima to annual primary production in the North Sea. Biogeochemistry. doi: 10.1007/s10533-012-9704-5
  95. Van den Meersche K, van Rijswijk P, Soetaert K, Middelburg JJ (2009) Autochthonous and allochthonous contributions to mesozooplankton diet in a tidal river and estuary: integrating carbon and isotope fatty acid constraints. Limnol Oceanogr 54:62–74CrossRefGoogle Scholar
  96. Vanderklift MA, Ponsard S (2003) Sources of variation in consumer-diet δ 15N enrichment: a meta-analysis. Oecologia 136:169–182CrossRefGoogle Scholar
  97. Viso A-C, Marty J-C (1993) Fatty acids from 28 marine microalgae. Phytochemistry 34:1521–1533CrossRefGoogle Scholar
  98. Voss M, Struck U (1997) Stable nitrogen and carbon isotopes as indicator of eutrophication of the Oder river (Baltic sea). Mar Chem 59:35–49CrossRefGoogle Scholar
  99. Weston K, Fernand L, Mills DK, Delahunty R, Brown J (2005) Primary production in the deep chlorophyll maximum of the central North Sea. J Plankton Res 27:909–922CrossRefGoogle Scholar
  100. Williams R, Conway DVP, Hunt HG (1994) The role of copepods in the planktonic ecosystem of mixed and stratified waters of the European shelf seas. Hydrobiologia 292/293:521–530CrossRefGoogle Scholar
  101. Winter JE (1969) Über den Einfluß der Nahrungskonzentration und anderer Faktoren auf Filtrierleistung und Nahrungsausnutzung der Muscheln Arctica islandica und Modiolus modiolus. Mar Biol 4:87–135CrossRefGoogle Scholar
  102. Witbaard R (1997) Tree of the sea. PhD thesis, Rijksuniversiteit Groningen, 157 ppGoogle Scholar
  103. Witbaard R, Jansma E, Klaassen US (2003) Copepods link quahog growth to climate. J Sea Res 50:77–83CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Benjamin Kürten
    • 1
  • Inmaculada Frutos
    • 2
  • Ulrich Struck
    • 3
  • Suzanne J. Painting
    • 4
  • Nicholas V. C. Polunin
    • 5
  • Jack J. Middelburg
    • 6
    • 7
  1. 1.Helmholtz Centre for Ocean Research Kiel | GEOMARKielGermany
  2. 2.Departamento de Zoología y Antropología FísicaUniversidad de AlcaláAlcalá de HenaresSpain
  3. 3.Museum für Naturkunde, Leibniz-Institut für Evolutions-und Biodiversitätsforschung an der Humboldt-Universität zu BerlinBerlinGermany
  4. 4.Centre for Environment, Fisheries and Aquaculture Science (CEFAS)LowestoftUK
  5. 5.School of Marine Science and TechnologyNewcastle UniversityNewcastle upon TyneUK
  6. 6.Centre for Estuarine and Marine EcologyNetherlands Institute of Ecology (NIOO-KNAW)YersekeThe Netherlands
  7. 7.Faculty of GeosciencesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations